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GENERAL INTRODUCTION 

Dissertation Organization 

This dissertation contains three papers in the format required for journal publication, 

describing the research I performed at Iowa State University. Preceding these papers is a 

literature review of 7c-complexation of carbon-phosphorus double and triple bonds. In the 

literature review as well as the papers, the literature citations, schemes, tables and figures 

pertain only to the chapters in which they appear. After the final paper is a general summary. 

Literature Review 

Introduction 

The field of carbon-phosphorus multiply bonded compounds has seen remarkable 

growth in a relatively short period of time. These compounds violate the outdated "double 

bond rule" which stated that 4th and 5th row main group elements should not be capable of 

fonning multiple bonds. This reluctance to take part in multiple bond formation is a 

manifestation of the inert s-pair effect in higher main group elements; ̂  the s-orbitals are 

contracted due to the greater nuclear charge and this spatial inequity between the s and p-

orbitals makes the formation of hybrid orbitals less favored, even though the energy 

differences between the s and p-orbitals in 4th and 5th row main group elements are 

comparable to those in second row elements. Although C=P n-bonds are calculated to be 22.3 

kcal/mol less stable than C=C ic-bonds,^ Becker was able to isolate the first example of a stable 

phosphaalkene compound^ in 1976 by incorporating bulky R-groups on the carbon and 

phosphorus atoms in order to kinetically stabilize the reactive C=P double bond. Since this 

discovery, many examples of stable phosphaalkene and other interesting C=P containing 
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compounds have been reported and the coordination chemistry of these compounds has 

developed at a very rapid pace. Theoretical calculations and photoelectron studies on 

MeP=CH2 have shown that the HOMO consists mainly of the C=P jc-orbital and that the 

LUMO consists mainly of the relatively low lying C=P n* orbital.^-^ Consequendy, 

compounds containing C-P multiple bonds have shown a rich olefin-like ^^-coordination 

chemistry. In fact, complexes containing C-P multiple bond analogs of almost all C-C multiple 

bond ligands are known, including phosphaalkenes, phosphaalkynes, phosphaallyls, 

phosphaallenes, phosphabutadienes, phosphacyclopropenes, phosphacyclobutadienes, 

phosphacyclopentadienyls and phosphaarenes.^"^ All of these C-P multiple bond ligands 

exhibit the ability to coordinate to metals through the C-P re-system, and offer the additional 

coordination site of the phosphorus lone pair as well. The ^'P NMR spectroscopy of these 

ligands has proven useful for structure elucidation and bonding explanations and is a very 

important diagnostic tool. Although these 7c-bonded C-P multiple bond ligands are in many 

cases analogous to their carbon counterparts, they also exhibit important differences which 

have allowed them to become more than just phosphorus analogs of common ligands. Unlike 

commonly tetravalent carbon, phosphorus is able to form mono, di, tri, tetra, penta and 

hexavalent compounds, which has allowed for the coordination of several C-P multiple bond 

ligands that have no analogs in carbon chemistry. 

This review covers structure and bonding aspects of 7i-complexes of carbon-

phosphorus unsaturated ligands in the literature through the middle of 1997. 

TI^-Phosphaalkene (R2C=PR) Complexes 

Both ab initio STO/3G calculations and'^''^ photoelectron spectroscopic results on 

phosphaalkenes indicate that the o-phosphorus lone pair and the C=P Tc-orbitals are very close 

in energy, with the re-orbital as the HOMO in the parent compound CH,=PH. These results 

suggest that phosphaalkenes should be capable of coordination either r\- through the C=P 
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double bond or ri' through the phosphorus lone pair, both of which have been accomplished in 

practice; there are several examples of complexes containing TI'-P coordinated or ri"-C=P 

coordinated phosphaalkenes, as well as mixed, n', n'-coordinated phosphaalkenes.^'^® There 

are also a few examples of cluster-stabilized phosphaalkenes with the phosphaalkene bridging 

between several metals.^'The majority of these complexes have been prepared by 

displacing weakly coordinating ligands on a transition metal complex with stable 

phosphaalkene ligands. Both steric and electronic factors determine whether the 

phosphaalkene Ligands will coordinate ii' or n' to a transition metal complex; electron-rich 

metal centers are better able to donate into the re* orbital and thus favor n'-coordination, while 

complexes containing bulky ancillary ligands tend to prefer ri'-coordination to avoid interaction 

with the often bulky R-groups on the C=P carbon atom. 

In the phosphaalkene complex Pt(PPh3)2(P(Mes)=CPh2), ̂  ^ both n' and n" forms of the 

phosphaalkene ligand were present and an equilibrium was established (eq 1) between these 

Mes 
Ph,P^ /Mes ph3P^ / 

p,_p^ . II (0 
PhjP C Ph c 

Ph Ph 'Ph 

two forms. At low temperatures the ri--coordinated complex was prevalent, while at higher 

temperatures and in the solid state the ti'-coordinated complex was more favored; the structure 

of the n' complex was determined by X-ray diffraction studies. Both calculations and 

equilibrium studies found that the n'-coordinated form was more stable (smaller enthalpy), but 

the difference was small (~4 kcal/mol). ̂  ^ When the PPhj ligands were replaced with PCyj 

(tricyclohexyl phosphine) groups, only the ri'-phosphaalkene complex was observed with no 

evidence of the ri'-form, evidently because the greater steric bulk in the PCy, ligands favors 

the less crowded n'-form. However, when PtCPPh,), was coordinated to the phosphaalkene 

(9-fluorenylidene)C=P(xyl) (xyi = 2.6 dimethylphenyl), only the n'-phosphaalkene complex 
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Xyl 

was present in both the solid state and in solution. ̂ 4 in this complex, the two aryl rings on the 

C=P carbon are forced into one plane, which allows the PtCPPhj), fragment to coordinate the 

C=P double bond with little steric interaction. 

As mentioned, electronic factors also play a role in determining the coordination mode 

of phosphaalkene ligands; NiCCO)^ reacted with Ph2C=P(xyl) to form the t]'-phosphaalkene 

complex (CO)3Ni[Ti'-(xyl)P=CPh2], while the same phosphaalkene coordinated in Ti'-fashion 

to the 2,2'-bipyridyl-nickel fragment. ^ explanation for this difference is that the CO 

ligands in the former are strongly re-accepting, which reduces the ability of nickel to backbond 

into the k* orbital of an q'-phosphaalkene ligand, but favors die q'-coordination through the 

phosphorus lone pair in which more electron density is donated to the NiCCOj fragment. 

However, when the better ci-donor ligand 2,2'-bipyridyl is present on nickel, the TI"-form of 

the phosphaalkene becomes more stable. A similar effect was found in complexes of platinum, 

where the phosphaalkene Ph2C=P(xyl) coordinated ri' to the Pt(COD) fragment, but ti" to the 

Pt(triphos) fragment, with the triphos ligand acting as a bidentate ligand instead of the usual 

tridentate form to accommodate the phosphaalkene ligand. Again, the more 7t-accepting COD 

ligand favors ti'-coordination, while the better cr-donating triphos Ugand favors ri*-

coordination. However, there are also examples of n'-coordinated phosphaalkenes in which 

CO—r 
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the ancillary ligands are all strongly n-accepting. For instance, Ni(C0)4 reacted with two 

equivalents of (SiMe3)2C=PCl to generate (CO)Ni[Ti"-C(SiMe3)2=PCl]2, in which two 

phosphaalkene ligands are coordinated r\' to the Ni(CO) fragment Also, in the reactions of 

FciCCO), with either H2C=PMes* or (H)(t-Bu)C=P(t-Bu), mixtures of the n'-P and ri"-C=P 

complexes were afforded (eq 2). Treatment in both cases (eq 2) with another equivalent of 

^P=CH2 

CH2=PR + Fe2(CO)9 (CO)4Fe Fe2(CO)9 ^p—(;;H2 (2) 

^>==CH2 (C0)4Fe 

Fe(C0)4 

FCjCCO), resulted in formation of the n'. n'-coordinated phosphaalkene complexes which were 

structurally characterized. 

The rc-complexation of the C=P bond in phosphaalkenes is analogous to the r|--

coordination of olefins and has also been described ^ ^ by the Dewar-Chatt-Duncanson model in 

which the ic-orbital (HOMO) donates to the transition metal fragment with a synergistic back 

bonding from the metal fragment to the 7t*-orbital (LUMO). This causes a lengthening of the 

C-P bond distance that is on the order of the lengthening of the C-C bond distance in 

coordinated olefins; a comparison of C-P bond lengths in free phosphaalkenes (typically about 

1.67 with the C-P bond lengths in the complexes (Me3P)2Ni[ri--

C(SiMe3)2=PC(H)(SiMe3)^8 and (Ph3P)2pt[Ti--C(9-fluorenylidene)=P(xyl)]14 (1.773(8) A 

and 1.832(6) A, respectively) shows that the phosphaalkene C=P bonds are lengthened to 

almost a typical C-P single bond length (1.82-1.87 A).^^ Also, the ^'P NMR chemical shift of 

the C=P phosphorus atom in ti^-coordinated phosphaalkene complexes is far upfield from that 

in free phosphaalkenes, analogous to the upfield shifts found in the '^C NMR of r\--

coordinated olefins. For instance, the ^'P chemical shift of the C=P phosphorus in 

(Me3P)2Ni[ri"-C(SiMe,)2=PC(H)(SiMeJ is 5 23.4 ppm, 380 ppm upfield from the free 
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phosphaalkene (Me,Si)X=PC(H)(SiMe,) at 5 404 ppm,^^ while an upfield shift of 266 ppm is 

found for the C=P phosphorus atom in (Ph3P),Pt[Ti"-Plt,C=PMes] relative to free 

PhnC=PMes. 11 Another distinguishing ^'P NMR feature of t]"-coordinated phosphaalkenes is 

the extremely small 'Jp^, coupling constants that are found when the coordinating metal contains 

an NMR active nucleus. An illustrative example is the difference between the tj' and n* 

coordinated phosphaalkene complexes (Ph3P)2Pt[Ti'-P(Mes)=CPh2] and (Ph3P)2Pt[r|*-

Ph2C=PMes]; the q'-phosphaalkene complex has '/pp, = 4960 Hz, while the ri'-complex of 

the same phosphaalkene has '/pp, = 500 Hz. ̂  ^ The former is a typical one bond P-Pt coupling 

constant in three-coordinate platinum phosphine complexes, while the latter is extremely small, 

indicating the small amount of s-character present in the Pt-P bond. This is a manifestation of 

the "inert s-pair" effect found in 3rd and 4th row main group elements in which the s-pair of 

electrons is reluctant to take part in hybridization, causing the C=P double bond to contain very 

little phosphorus s-character, while the phosphorus lone pair contains mainly s-character. 

n^-Phosphaalkyne (R-Cs?) Complexes 

Photoelectron spectroscopic studies^O^S I on a series of phosphaalkynes has shown 

that the HOMO is of the n-type and the Jt-n separation is greater than in corresponding nitriles 

(R-CsN), indicating that ti'-coordination of the C=P bond should be preferred over n'-

coordination through the phosphorus lone-pair. This contrasts with the known propensity of 

nitriles to coordinate n' through the nitrogen lone pair. These calculations are consistent with 

the fact that only a few examples of n'-P coordinated phosphaalkynes are known, while the 

vast majority of these complexes are either n'-coordinated through the ChP bond to a single 

metal fragment or bridged ri" between two metals. 

The first examples of mononuclear r|"-coordinated phosphaalkynes were prepared by 

reacting (eq 3) zerovalent platinum complexes with t-Bu-C=P to form (R3P),Pt(r|--t-BuC=P) 
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^3P\ P 
Pt(PR3)2L + t-BuC=P ^Pt-^ll (3) 

R3P = MejP, PhjP; 9 
2 R3P = dppe, triphos 

(R3P = McjP, PhjP; 2 R3P = dppe, triphos)7'16'22 The structure of (Ph3P)2Pt(Ti^-t-BuC=P) 

was determined by an X-ray diffraction study which showed that the C-P bond length 

(1.672(17) A) was much longer than that (1.536(2) A) in free t-BuCsP.22 yjie c_p distances 

in Ti'-coordinated phosphaalicynes are similar to those found in typical phosphaalkenes, which 

is consistent with back-bonding into the k* orbitals in R-OP by electron rich metal fragments. 

Similar increases in C-C bond lengths have been reported in Ti"-coordinated alkyne complexes 

as well, indicating a similar type of bonding in these species. The ^'P NMR spectrum of 

(Ph3P)2Pt(Ti"-t-BuC=P) exhibits a signal at 5 82.1 ppm that is far downfield from that of t-

BuOP at 5 -69.2 ppm, consistent with the C=P double-bond-like character, and the value of 

'/ppj = 62 Hz is the smallest one-bond Pt-P coupling constant yet recorded.22 As in the tj*-

phosphaalkene complexes, this small coupling constant is due to the low s-character on 

phosphorus in the C=P bond. More recently, the complex (Ph3P)2Pt[Ti--(i-Pr,N)C=P] was 

prepared, which showed similar ^'P NMR properties to the t-BuC=P complexes.23 

The reactions (eq 4) of Cp2M(PMe3)2 (M = Ti, Zr) with t-BuC=P resulted in the r\--

coordinated phosphaalkyne complexes Cp,M(PMe3)[Ti*-t-BuCsP] (M = Ti, Zr) by 

^ t-BuCsP ^PMe3 
CpzM ^ CP2M (4) 

PMe, 
C ^ 

M = Ti, Zr X 

displacement of one PMe3 ligand.24 The structure of the titanium complex was determined by 

X-ray diffraction and revealed a C-P distance of 1.634 A, which is lengthened from the free 

phosphaalkyne but not as much as in the platinum complex. The ^'P NMR of the titanium and 

zirconium complexes exhibited signals for the phosphaalkyne phosphorus atoms at 5 122.7 
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ppm and 5 196.9 ppm, respectively, which are even farther downfieid than that of the platinum 

phosphaalkyne complex. The titanium and zirconium complexes also exhibited '^C NMR 

chemical shifts for the OP carbon atoms at 5 298.6 ppm and 8 310.7 ppm, respectively, which 

are far downfieid in the region of metal-carbene or metal-acyl complexes.^^ Interestingly, these 

compounds reacted (eq 5) with BEtj to remove the PMe, ligand and generate a titanium dimer 

CpjTi, 

• PMe, 
CpjM 

V 
BEt, 

X 
M = Ti, Zr 

X 
y 

Cp2Zr 

VP-TiCpj 

Wc-
p^ 

(5) 

Zr\ , 

p. /P 

and a zirconium trimer in which the t-BuCnP ligands were coordinated n', n" through both the 

CsP triple bond and the phosphorus lone pair.25 

Several dinuclear phosphaalkyne complexes have been prepared in which the 

phosphaalkynes are bridged n-perpendicular-n^, n* to two metals forming complexes with 

LnM: 

> 

\ 
MLn' 

r 
R 

a tetrahedral M,CP core where the R-C=P ligand acts as a four-electron donor to the two 

metals. These compounds are similar to Ti'-bridged alkynes and have been prepared 

similarly by reacting R-CsP with dimeric metal complexes containing metal-metal single, 

double or triple bonds.^ The majority of these complexes contain the readily available 
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phosphaalkyne t-BuC^P; complexes thus obtained with R = t-Bu include n'-Ct-

BU)CHP]ML;; L„M = ML; = Co(CO)3;22,26 = ML; = NiCp;27 L„M = ML; = 

MO(CP)(CO)2; 19,26 = (CO)3Co, ML; = NiCp;27 L„M = CP(CO)2Mo, ML; = 

W(Cp)(CO),.28 With the dicobalt metal system, the complexes (CO)3Co[m-n^> n'-

RC=P]CO(CO)3 with R = N(i-Pr)j,23 Me, Ph and SiMe, have also been prepared, although the 

complexes with R = Me, Ph and SiMe3 were not formed by reacting R-CHP with the dimeric 

metal complex, but rather were formed by the dechlorination of R-CCI2-PCI2 with 

CO;(CO)g.29,30 7he crystal structure of (Cp)(CO)2Mo[pi2-Ti%ri--(t-Bu)C=P]Mo(Cp)(CO)2 

exhibited a phosphaalkyne C-P bond length (1.719 A) that was quite a bit longer than those in 

mononuclear n'-bonded phosphaalkyne complexes, but not quite as long as a C-P single bond 

containing bridging ancillary ligands, e.g., Fe2(CO)^(|i-CO)((i-dppm)(n-ri*, n'-t-BuCsP)31, 32 

and Co2(CO)4(|a-ri-, Ti"-t-BuC=P)(^-Ph2PNHPPh2-P,P')32; the structure of both of these 

complexes were determined by X-ray diffraction studies and showed similar C-P bond lengths 

to those in other Ho-n', n'-phosphaalkyne complexes. There is also an example of a dinuclear, 

H-perpendicular-Ti', ri'-bridging phosphaalkyne complex Cl2Pt(n-dppm)2(n-t-BuC=P) which 

was formed by reacting (eq 6) the Pt-Pt bonded dimer Cl2Pt2(p.-dppm)2 with t-BuCsP.33 in 

R-CCI2-PCI2 + [CO2(CO)8] 

(R = Me, Ph, Me3Si) 

(OC)3Co' Co(CO)3  

p 

I 
R 

(1.82-1.87 A). 19 There are also some recent examples of |i2-n% n'-phosphaalkyne complexes 
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Ph-,P c'Pho 

t-BuC=P 
Cl2Pt2(|i-dppm)2 Pt Pt 

PhoP\ ^PPh-, 

this complex, the phosphaalkyne donates one electron to each Pt center and is perhaps best 

viewed as a C,P-diinetallaphosphaalkene.34 

Recently, mononuclear ri'-complexes of phosphaalkynes acting as four-electron donors 

have been described.^^'^G Although none have been structurally characterized because of the 

tendency to react further to form 1,3-diphosphacyclobutadiene complexes, these compounds 

represent a new class of phosphaalkyne complexes which are related to ri'-(4e) alkyne and 

nitrile complexes. In the complex [WF(C6H4CH2NMeCH2CH2NMe2)(CO)(Ti--t-BuC=P)],36 

the "P NMR chemical shift of the phosphaalkyne phosphorus atom (6 452.4 ppm) is far 

downfield, even more so than in q"-phosphaalkynes, and the '^C NMR spectrum showed 

a similar downfield signal for the phosphaalkyne carbon at 6 315.2 ppm. The large value 

of 117.7 Hz is much larger than that in the free phosphaalkyne ('7^ = 38.5 Hz) which is also 

indicative of the TI"-(4e) coordination mode.36 These complexes underwent interesting 

coupling reactions^^'^^ with phosphaalkynes and CO, which do not occur in the related ri"-

(4e) nitrile complexes whose chemistry is dominated by ready dissociation of the nitrile ligand. 

A great deal of work has been recently devoted to the functionalization of coordinated 

phosphaalkyne ligands by dimerization into xiMiphosphacyclobutadiene complexes and by 

trimerization into ri'^-triphosphaarene complexes. Also, phosphaalkynes have been 

fiinctionalized into n^-coordinated phosphacyclopentadienyl complexes having various 

numbers of phosphorus substituents. The chemistry of these ligands is quite well-developed, 

but is outside the scope of this review. However, several reviews^'^ have been written on 

these fascinating new C=P multiply bonded ligands. 
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n -A. -Phosphaalkyne (RChPR,) Complexes 

In contrast to A.^-phosphaalkynes (R-CsP) which possess a triple bond, 

phosphaaikynes must be regarded as a mixture of three resonance structures including a 

\© 0 
/P=.C-

....d 0 
^P-C- )p=C-

(A) (B) (C) 

phosphorus-vinyl ylide (A), a phosphino-carbene (B) and a A.^-phosphaalkyne (C). From ab 

initio calculations on the parent compound HCPH,, the carbon-phosphorus overlap population 

is larger than in the isomeric phosphaalkene HjCPH, and the calculated bond length was rather 

short (1.61 A), indicating a strong contribution from resonance form C.^^ ^ series of these 

free A.^-phosphaalkynes was prepared, but no X-ray structures were reported.38 Although 

direct complexation of a free X^-phosphaalkyne has not yet been accomplished, a few examples 

of complexes containing r|"-?i.^-phosphaaIkynes were prepared by other methods. When the 

tungsten carbene complex (C0)4[(Me)(H)(Ph)P]W(=C(NEt^)(PMePh) was heated (eq 7), the 

phosphine ligand was removed with concomitant rearrangement of the carbene ligand from 

H CO 
Ph, 

Me' 

CO 

OC 

,w;: 

OC 

CO 
-PR, 

NEto 

\ 
,A 

C0> 

CO-

/ 
NEt. 

:wt 

/ 
(7) 

CO 
Ph Me 

Ph Me 

n'-C to ri"-C,P forming (CO)4W[ri"-C(NEt2)HP(Me)(Ph)]. The structure of this compound 

was determined by X-ray diffraction studies to exhibit an ri'-A.^-phosphaalkyne ligand acting as 

a four-electron donor.^^ Recently, a series of these complexes were prepared in a different 

manner (eq 8) by treating molybdenum and tungsten carbyne complexes of the type 
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R 
1© 

..M=C-R 

PR'Cl2 

Na[BPh4] C 
/ 

(8) 
oc"7 

oc 
oc / 

oc 
p 

(M = Mo, W) R' R' 

Cp(CO),M=CR' with PR^Cl and NaBPh^ to form [CpM(C0),{n^-C(R')=P(R2)}](BPhJ (M = 

Mo, W), or with PMe, followed by PR^Cl and NaBPh4 to generate [CpM(CO)(PMe3){T|"-

C(R')sP(R^) }](BPhJ (M = Although no crystal structures were determined in this 

system, spectroscopic properties were consistent with the presence of ri"-A.^-phosphaalkyne 

ligands in the metal complexes. 

A different method of preparing ri"-A.^-phosphaalkyne complexes involved the double 

intramolecular C-H bond activation of a coordinated PMe, ligand in early transition metal 

complexes to generate (ri~-(H)C=PMe2) ligands. When Cp^TaCl^ was reacted (eq 9) with 

metallic sodium in neat PMe,, the complex Cp*(Me3P)(H)2Ta[Ti"-(H)C=PMe2] formed in good 

yield, where the two hydride ligands originated from a PMe, ligand to form the 

hydride ligands migrated back to the HCaPMe, ligand to form Cp*Ta(PMe3)2(CO)2 or 

Cp*Ta(PMe3)2(H)4, respectively. However, when treated with MeX (X = CI, Br) or CHClj, 

the HCsPMe, ligand remained intact. Similar to eq 9. if TaCls was treated with sodium in neat 

PMe3, the complex (Me3P)4(Cl)Ta[ri--(H)CsPMe2] resulted which was further reacted with 

butadiene to generate the complex (Me3P)2(Cl)Ta(n''-C4H6)[r|"-(H)CsPMe2], the structure of 

which was determined by X-ray diffraction studies.^ 

Cp*TaCl4 

/ \ 
Me Me 

phosphaalkyne complex.'^^ Interestingly, if this complex was reacted with CO or H,, the 
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A more recent example of an n'-A-^-phosphaalkyne complex involved the 

functionalization of a coordinated X^-phosphaalkyne complex. When the ri'-vinyl complex 

Cp(Ph3P)(Br)Re[=C(Ph)CH(Ph)] was reacted (eq 10) with t-BuCsP and HBF^'OEt,, the vinyl 

......PPh3 ,.BuC=P t^BuC^P \©.....-PPh3 

'Br (10) 
Br HBF4»OEt2^ Re 

F3B"0 
© t 

Ph^"^ Ph ^P C—t-Bu 
H 

ligand was protonated and removed as rranj-stilbene, and the complex Cp(Ph3P)CBr)Re[Ti--(t-

Bu)CsP(H)(0'*BF3] formed; the structure of this complex was determined by X-ray 

diffraction studies to contain an TI--A.^-phosphaalkyne with a short C-P bond (1.699(7) A).45 

This complex formed presumably by protonation of an ri--X.'-phosphaaikyne intermediate 

followed by oxygen transfer and conversion of BF^' to BFj, although detailed mechanistic 

information was not obtained. In all of the r|"-X.^-phosphaalIcyne complexes that were 

characterized by X-ray analysis, the metal-carbon distances were within the range for metal-

carbon double bonds, indicating a strong contribution from a phosphino-carbene resonance 

form (D). However, the C-P distances (1.683-1.807 A) are considerably shorter than that 

expected for a C-P single bond (1.82-1.87 A), indicating a substantial contribution from an ii"-

/\ // / 
P-

MLn MLn 

(D) (E) 

X^-phosphaalkyne resonance form (E). The NMR properties of these complexes are also 

characteristic, exhibiting downfield '^C NMR chemical shifts for the ChP carbon (5 170-287 

ppm) and upfield ^'P NMR chemical shifts for the CsP phosphorus (5 -62 to -153 ppm). 

Also, a few examples of cluster-stabilized n'-A-^-phosphaalkyne osmium complexes have been 

prepared."^^ 
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n'-Phosphaallene (R,C=C=PR) and Diphosphaallene (RP=C=PR) Complexes 

Only a few examples of mono- and diphosphaallene metal complexes are known. Ab 

initio calculations on HP=C=PH have shown that the two sets of a-phosphorus lone pair (n) 

orbitals and the C=P re-orbitals are similar in energy and act as the quasi-degenerate HOMOs; 

similar calculations on HP=C=CH3 showed that the C=P ji-orbital is the In 

accord with these findings, the complexes (PR3)2M(ri*-Mes*P=C=PMes*) (M = Ni, R = Ph; 

M = Pd, R = Ph, Et; M = Pt, R = Ph) have been prepared, in which one of the C=P bonds is 

n'-coordinated to the transition metal.^'4^9,50 structure of (PEt3)2Pd(ri'-

Mes*P=C=PMes*) was determined by X-ray diffraction and showed that the ri'-ligated C=P 

P Mes* 

Mes* 

bond length (1.73(3) A) is slightly longer than that in the non-coordinated C=P bond (1.67(3) 

A).50 Interestingly, in the n'-monophosphaallene Pt(0) complexes (PR3),Pt(ri--

Mes*P=C=CPh2), the metal coordinates through the C=P bond rather than the C=C bond, 

indicating the propensity of C=P bonds to participate in Ji-bonding to transition metals.^® 

When metal carbonyl fragments (e.g., W(CO)5 and Ni(CO)3) were coordinated to mono- and 

di-phosphaallenes, n,'-ligation through the phosphorus lone pair took place.^ ^ This is 

analogous to the situation in phosphaalkenes in which 7i-accepting ancillary ligands favor n'-P 

over ri"-C=P coordination. There are also a few examples of cluster-stabilized phosphaaUene 

complexes.52 

More recently, the first examples of n'-coordinated 2-phosphaallene complexes 

(PR3)(Cl)M(ri"-C(SiMe,)2=P=C(SiMe3)0 (M = Pt. Ni) were reported from the reactions of 
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M(PR,)2(C0D) with (SiMeJ2C=PfCI)=CCSiMe3)2.53 The structure of the nickel compound 

with PR3 = PEt, was determined from X-ray diffraction studies and showed that the 

(SiMe3)2C=P=C(SiMe3)2 ligand was coordinated through one of the C=P bonds, acting as a 

three-electron donor to the Ni(PEt3)Cl fragment. The ri"-coordinated C=P bond length 

(1.732(7) A) was longer than that in the non-coordinated C=P bond (1.663(8) A), consistent 

with the lengthening of n'-coordinated C=P bonds in other phosphaallene systems. 

TI^-l-Phosphaallyl (RP-CR=CR,) and 1,3-Diphosphaallyl (RP-CR=PR) 

Complexes 

Similar to allyl compounds which contain a deiocalized 7t-system and tend to coordinate 

to transition metal fragments, phosphaallyl and diphosphaallyl compounds (where PR 

groups are substituted for CR^ groups in an allyl) have also been found to contain deiocalized 

ji-systems and can coordinate in an n^-fashion. There is only one known example of an n^-

coordinated monophosphaallyl complex, Cp(CO)Fe[TI', r|^-CH2CHPPh]W(CO)5, which was 

additionally ri'-coordinated through the phosphorus lone pair to a W(C0)5 fragment.^^'^^ 

NMR studies of this complex showed that the W-P-CH=CH2 moiety is planar, and the P-C=C 

unit is r|^-coordinated to the Cp(CO)Fe fragment. In contrast, there are several known 

examples of n^-coordinated 1,3-diphosphaallyl complexes. These complexes were first 

prepared by reacting (eq 11) Na[Co(CO)4] with the chlorophosphino-substituted 1,3-

diphosphapropene compound Mes*P=CH-P(Cl)(Mes*) to form (CO)jCo[ri^-

_SiMe3 

/\ 
Me3Si SiMe3 
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Mes*-P=CH-P^ 
CI Na[Co(CO)4]  

CO 
OC^ I .CO 

Co 

Mes* 
P 

Mes* 

H-CC^ 

(11 )  

Mes* 

diphosphaallyl].^^ The X-ray-determined structure showed a planar arrangement of the PCP-

skeleton and the C( 1) atoms of the aryl moieties; the three atoms of the PCP triad are 

coordinated to cobalt.^^ The C-P bond lengths were both very similar and intermediate 

between single and double C-P bonds, further supporting the delocalized bonding. Similarly, 

K[CpNi(CO)] and Na^lPeCCO)^] were reacted with Mes*P=CH-P(Cl)(Mes*) to form 

CpNi[TI^-diphosphaallyl]^^ and [(CO)3Fe(ri^-diphosphaallyl)]',58 respectively. The 

CO ~I© 

Mes*".. 

H-ccT 

Ni 

-P 

OC^ 1 /CO 

:P 
Mes*".. 

r P 
Mes* Mes* 

diphosphaallyl complex of iron was also formed by reacting the diphosphaallyl anion 

[Mes*P=CH-P(Mes*)]Li with Fe(C0)5 t)y reacting (eq 12) the ri',r|'-diphosphapropene 

complex (CO)3Fe[ri',n"-P(Mes*)=CH-PHMes*] with n-BuLi.^^ This Ti'.n*-

CO 
OC. 1 .CO 

^Fe 

Mes* — P 

n-BuLi 

Mes* 

H 
HCl 

OC^ 

Mes*"., 

H-

CO ~l© 
,co 

-e 

^P 
(12) 

H Mes"" 
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diphosphapropene complex was then regenerated (eq 12) by protonating the iiMiphosphaallyl 

complex with HCI. When the n^-diphosphaailyl complex of iron was reacted with nickelocene 

(eq 13), a new type of complex was obtained which, in addition to the ri^-coordination of the 

CO ~lo 
OC^I XO 

Mes*'., 
-e 

P 
CpsNi Mes*", 

( 1 3 )  

NiCp 

Mes* 
Mes* 

Fe(C0)3 group, contained a NiCp fragment coordinated to both of the lone pairs of the 

diphosphaallyl ligand.^^ The X-ray determined structure showed a planar diphosphaallyl 

fragment that is still n^-coordinated to iron, and the Ni-P distances were very similar to those in 

related nickel phosphine complexes. 

More recently, a series of ri^-diphosphaallyl complexes have been prepared (eq 14) by 

reacting anionic metal complexes with diphosphirane compounds.^0 Some of these reactions 

*Mes 

Ph / 
P 

Mes* 
CO 

Na[(Cp)„M(CO)^] Mes*'. 

Ph-
( 1 4 )  

CI Mes* 

M=Mo, L=Cp 
M=W, L=Cp 
M=Co, L=CO 

also produced intermediate n'-P bound diphosphaallyl complexes, which were characterized by 

NMR spectroscopy. All of the X-ray structures of these diphosphaallyl complexes exhibit 

planar PCP units that have very similar C-P bond lengths that are intermediate between single 

and double bond lenths, indicative of the delocalization in these complexes. 
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n^-Phosphabutadiene (RP=C(R)-C(R)=CR,) and Diphosphabutadiene 

(RP=C(R)-C(R)=PR) Complexes 

By analogy with the many n'^-butadiene complexes that are known to involve 

delocalized it-bonds within die planar Q skeleton of the ligand, a variety of phosphorus-

substituted analogs have been investigated as ligands. A few examples of ^''-coordinated 

tungsten 1-phosphabutadienes are known of the type (CO)4W(ti'*-RP=C(R)-C(R)=CR2); 

although no structures have been reported, NMR evidence suggests planar, delocalized PCCC 

frameworks in these complexes.^l There is also an example of an q'^-coordinated 1-phospha-

4-metallabutadiene complex that was formed (eq 15) by insertion of an alkyne into one of the 

P bonds of the phosphlnidene complex [Fe3(CO),oPR] (R = p-MeOQHJ.^^ structure of 

this complex exhibited a nearly planar FeCCP moiety diat is r|'*-coordinated to an Fe(C0)3 

fragment. There have been two recent examples of ri"'-coordinated 2-phosphabutadiene 

complexes, both of which contain a W(CO)5 fragment coordinated to the phosphabutadiene 

phosphorus lone pair and were characterized by X-ray diffraction studies. When the r|'-2-

phosphabutadiene tungsten complex (CO)5W[ri'-(SiMe3)jC=P-C(OEt)=C(H)Ph] was reacted 

(eq 16) with Fe2(CO)g, an r\', ri''-2-phosphabutadiene complex resulted, in which the CPCC 

Fe-

Phx Fe(C0)4 

(15) 

OC 
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W(C0)5 Ph^ ^OEt 

/SiMe3 Fe.(C0)9 
H Ph—C^^ SiMe3 (^6) 

^ ^'^^3 j/ Fe SiMe, 
(CO)5W / \ 

OC CO 
CO 

moiety is almost planar and only partially delocalized with C-P distances of 1.754(8) A and 

1.814(8) A, indicating partial C=P-C=C character in the phosphabutadiene ligand.^^ 

contrast, full delocalization occurs in the nV ri'*-2-phosphabutadiene complex [(CO)3Fe{Ti"*-

CHMe2(H)C=P-C(H)=C(H)Ph[W(CO)5]}], where the C-P distances of 1.753(4) A and 

1.743(4) A are the same within error, and the CPCC skeleton is planar.^ 

There are a few examples of n^-coordinated 1,3-diphosphabutadiene complexes, which 

tend to exhibit planar PCPC skeletons as in monophosphabutadiene complexes. These have 

been prepared by reacting 1,3-diphosphabutadienes with transition-metal carbonyl complexes. 

In the reaction (eq 17) of Mes*P=C(OSLMe3)-P=C(OSiMe3)t-Bu with Fe2(CO)9, the r|^-

SiMe3Q. 
Mes*N^ ^0SiMe3 

P=C ^OSiMe3 Fe-,(C0)9 Mes*-P' 

Fe, \-Bu (17) 
t-Bu / \ 

OC CO 
CO 

coordinated 1,3-diphosphabutadiene complex [(CO)3Fe(ri^-Mes*P=C(OSiMe3)-

P=C(OSiMe3)t-Bu}] formed, but a reaction with the same 1,3-diphosphabutadiene and 

Ni(CO)4 resulted in formation of the n'-P coordinated complex.^^ The ^'P NMR spectra of 

these complexes showed peaks at 5 -14.5 and -62.5 ppm in the former and at 5 179.8 and 

138.3 ppm in the latter; the upfield shift of the signals in the ri^-complex is typical of the large 

upfield shifts seen in side-on bound C=P compounds. There is also a report of an interesting 

^''-coordinated l,3-diphospha-4-metalIabutadiene complex that was prepared (eq 18) by 

C OSiMc^ 
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Cp Mes* H 
Mes* or P r 

W=P^ Fe2(CO)9 ^K.. // 
/[ •^C=B °C—w\ / P-Mcs. 

CO CO Mes* '"P /f\ 
OC I CO 

CO 

reacting a tungsten phosphinidene complex with Fe2(C0),.^^ The structure of this complex, 

determined by X-ray diffraction studies, exhibits a nearly planar arrangement of the W-P-C-P 

framework and the two F-C bonds were the same within error, supporting the view that this is 

a delocalized heterobutadiene complex. 
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NICKEL COMPLEXES CONTAINING NEW CARBON-

PHOSPHORUS UNSATURATED LIGANDS: FIRST EXAMPLES 

OF PHOSPHAVINYLIDENE-PHOSPHORANE [R3P=C=PR'] AND 

PHOSPHAVINYL PHOSPHONIUM [C(H)(PR3)=P(R')]" LIGANDS 

A paper submitted to Organometallics 

Wayde V. Konze, Victor G. Young, Jr.', and Robert J. Angelici* 

Abstract 

Oxidative addition reactions of CUC=PN(SiMe3)2 with 1:2 Ni(COD)2/PPh3, Ni(PPh3)4 or 

(Ph3P)2Ni(C2H4) initially yields the phosphavinyl phosphonium complex Cl(Ph3P)Ni[ri"-

C(Cl)(PPh3)=PN(SiMe3)J (Ila). Addition of another equivalent of Ni(0) reagent to Ila 

results in the formation of the novel, dinuclear, phosphavinylidene-phosphorane complex 

Ni2Cl2(PPh3)2[H2-n":Ti"-C(PPh3)=PN(SiMe3)2] (Ilia); the structure of Ula was established by 

X-ray diffraction and contains a Ph3P=C=PR' ligand bridged between two 4-coordinate, planar 

nickel atoms in a butterfly arrangement with a Ni-Ni distance that is too long for significant 

bonding interaction. The Ph3P=C=PR' ligand, which may be viewed as a phosphavinylidene 

(=C=PR) ligand with a phosphine donor substituent, acts as a six-electron donor to the two 

nickel atoms. This contrasts with the known diphosphaallene compounds of the types 

R3P=C=PR3 and RP=C=PR which act as two-electron donor ligands. When the reaction of the 

Ni(0) reagent is performed with Cl2C=PMes* (Mes* = 2,4,6-tri-ferr-butylphenyl), die 

mononuclear phosphonio-phosphavinyl complex CI(Ph3P)Ni[ri--C(H)(PPh3)=P(Mes*)] (Va) 

forms. The structure of Va was established by X-ray diffraction and contains a 

[C(H)(PR3)=P(R')] ligand which acts as a three-electron donor to the Ni(PPh3)Cl fragment. 

This structure also exhibits a puckered, boat-shaped supermesityl ring. Both Ilia and Va 



www.manaraa.com

26 

exhibit labile PPh3 groups on nickel which are easily substituted with PEt,, but the carbon-

bound PPhj groups could not be substituted with PEt,. 

t X-Ray Crystallographic Laboratory, Chemistry Department, University of Minnesota, 

Minneapolis, MN 55455 

Introduction 

Many recent advances have been made in the coordination chemistry of ligands 

containing carbon-phosphorus multiple bonds. There are numerous examples of phosphoms 

analogues of common unsaturated organic ligands which exhibit rich coordination chemistries 

due in part to the presence of the phosphorus lone electron pair. Examples of q'- through 

coordinated phosphorus-substituted hydrocarbon ligands are known; representative examples 

include phosphaalkenes (A), phosphaalkynes (B), diphosphaallenes (C), diphosphaallyls (D), 

phosphacyclobutadienes (E), phosphacyclopentadienyls (F) and phosphabenzenes (G). 
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The coordination chemistry of phosphaalkenes (A) and phosphaalkynes (B) has been 

reviewed, ̂  as has the coordination chemistry of the cyclic phosphorus-substituted compounds 

of types E-G.^ However, the coordination chemistry of diphosphaallenes (C) and 

diphosphaallyls (D) is much less developed.^ Phosphorus ylides (R'2C=PR5), which are the 

tetracoordinate (a"*) phosphorus analogs of phosphaalkenes, have been studied a great deal with 

respect to their utility in the Wittig reaction and have been studied to a lesser extent as ligands in 

transition metal complexes.^ Interestingly, the coordination chemistry of ylides, which is 
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mainly limited to n'-C-coordination^ is dramatically different than that of phosphaalkenes. 

There are also examples of ^''-phosphorus analogs of diphosphaallenes, i.e. (R3P=C=PR3)5 

and diphosphaallyls, i.e. [(R3P)HC=PR3r,^ as well as mixed cr^-diphosphaallyls 

[(R3P)HC=PR']'^.^'10 However, there are no examples of mixed cr, a'*-diphosphaallenes 

(R3P=C=PR'). Of these a'^-diphosphaallene and diphosphaallyl compounds, only the d*, a*-

diphosphaallenes (R3P=C=PR3) have been investigated as ligands, ̂  ^ exhibiting a preferential 

n'-C-coordination as in the R'3C=PR3 compounds due to the strongly carbanionic character of 

the ylidic carbon.'^ The dramatic differences imparted by the c^-phosphorus should give these 

compounds interesting ligation properties that contrast with their cT-phosphorus counterparts, 

particularly in the case of the mixed cr, o'^-diphosphaallyls [(R3P)HC=PR']'^ and cr, ct"*-

diphosphaallenes (RjP=C=PR') in which comparisons of bonding properties can be made 

directly between the cr and phosphorus atoms. 

We recently succeeded in preparing the fet example of a coordinated isocyaphide, 

(:C=PR) ligand by oxidative addition of the C-X bond in the phosphavinyi complex (1) (eq 1) 

to generate a diplatinum complex [(Cl)(Et3P)Pt(M.-C=PR)Pt(PEt3),(Cl)] (2) containing a semi-

Pt(PEt3)4 + Cl2C=PR 
(R = Mes*, 2,4,6-tri-rerr-butylbenzene) 

1 
PEt-i pEt, 

<0 
Et3P ^C=P^ EtjP C 

CI R I 

(1) (2) ^ 

bridging :C=PR group. More recently, Weber and coworkers reported the synthesis (eq 2) 

of a diiron complex containing a symmetrically-bridged :C=PR ligzind (3) by a different 

route. 
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We also reported an expanded study of the syntheses and reactions of the phosphavinyl 

compounds X(R'3P)2M[C(=PR)X] (M = Pt, Pd; X = CI, Br; R' = Ph, Et; R = 2,4,6-tri-rerf-

butylphenyl) in order to assess the general usefulness of ±ese starting materials for the 

preparation of complexes containing :C=PR ligands according to eq I. However, this 

approach was limited by the tendency of the R-group to migrate from phosphorus to carbon 

thereby forming the phosphaalkyne (R-C^P, R = 2,4,6-tri-rerr-butylphenyl). A detailed study 

of this migration in the case of R'= Et showed that it proceeds through a novel bicyclic 

intermediate (4) (eq 3). ̂ 4 Rearrangement of the 2,4,6-tri-rerr-butylphenyl R-group from 

X=C1, Br (4) 
R=2,4,6-tri-rerr-butylphenyl 

phosphorus to carbon has also been reported in the conversion of Li(Cl)C=PR to LiCl and R-

C=pl5-I8 and in the reaction of Pd(PPh3)4 with Cl2C=PR to give Cl,Pd(PPh3)2 and R-CsP.^^ 

In order to probe the generality of eq 1 for the synthesis of other complexes containing 

:C=PR ligands, we explore in the present paper reactions of Cl2C=PR with Ni(0) complexes. 

We chose Cl2C=PR reactants with non-aromatic R groups in order to circumvent R-group 

rearrangement (eq 3). During the course of these studies, we isolated the first example of a 

mixed a", o'*-diphosphaallene, or phosphavinylidene-phosphorane ligand, which is bridged 

Pt(PEt3)4 + X2C=PR 

X R 

R-C^P + (3) 

/ran5-X2Pt(PEt3 )2 
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between two nickel atoms in a butterfly arrangement with the R3P=C=PR' ligand acting as a 

six-electron donor as in H. This ligand may be considered as a triphenylphosphine donor-

stabilized phosphavinylidene ligand. Phosphavinylidene ligands can also be called 

PR3 
I RsR: ,H 

CI''.. ->'^1 
'.Ni 1 ^Ni ^ 

R3P- 'PR3 

R' R 

(H) (I) 

isocyaphides (CHPR) and are phosphorus analogs of isocyanides (C=NR). Since there are no 

examples of donor stabilized isocyanide RJP=C=NR, carbonyl R3P=C=0 or thiocarbonyl 

R3P=C=S ligands, the formation of the PPhj-stabilized :C=PR ligand in H illustrates that 

phosphorus analogs of isocyanides offer unique differences in bonding with respect to their 

well-studied isoelectronic analogs. We have also isolated the first example of a coordinated cr, 

(T'*-diphosphaallyI, or phosphavinyl phosphonium ligand, which is coordinated n" to a nickel 

atom with the (R3P)(H)C=PR' ligand acting as a three electron donor as in I. The preparations 

of complexes of types H and I will be discussed, along with likely pathways of formation and 

chemical reactivity. Structure and bonding in these new ligands will also be discussed. 

Experimental Section 

General Procedure. All manipulations were carried out under a dry, oxygen-free 

argon atmosphere, using standard Schlenk techniques. All solvents employed were reagent 

grade and dried by refluxing over appropriate drying agents under nitrogen. Tetrahydrofuran 

(TBff) and diethyl ether (Et^O) were distilled over sodium benzophenone ketyl, while hexanes 

and toluene were distilled over CaH,. Acetone was distilled over anhydrous MgS04. 

The 'H NMR spectra of compounds were recorded in solvent unless otherwise 

specified using a Varian VXR 300-MHz spectrometer with TMS (5 0.00 ppm) as the internal 
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standard. The -'P{ 'H} and ''P NMR spectra were recorded on a Bruker AC 200-MHz 

spectrometer using 85% H^FO^ (5 0.00 ppm) as the external standard. The '^C{ 'H} and '^C 

NMR spectra were recorded on a Bruker DRX 400-MHz spectrometer using CDCI3 as the 

internal standard. Elemental analyses were performed by National Chemical Consulting, Inc., 

Tenafly, NJ. The compounds Ni(COD)2,20 (PPh3)2Ni(C2HJ,21 Ni(PPh3)4,22 

Cl2C=PN(SiMe3)2,23 Cl2C=PMes*24 Br3C=PMes*25 were prepared by literature 

methods. Phosphine ligands were purchased from Strem and used without further 

purification, with the exception of PPhj, which was recrystallized from MeOH. 

Preparation of Ni,Cl,(PPh3)2[H:-Ti^Ti'-C(PPh3)=PN(SiMe3)2] (Ilia) 

through Intermediate Cl(Ph3P)Ni[ri"-C(CI)(PPh3)=PN(SiMe3)2] (Ila). Method 

A. To a cooled (-50°C) slurry of NifCOD), (0.500 g, 1.82 mmol) in toluene (10 mL) was 

added a cooled (-50°C) solution of PPh, fO.954 g, 3.64 mmol) and Cl2C=PN(SiMe3)j (0.249 

g, 0.909 mmol) in toluene (10 mL). The dark red solution was allowed to warm slowly with 

stirring. A ^'P{ 'H} NMR spectrum taken when the reaction had reached -20°C after about 20 

min showed Ha as an intermediate, with no traces of EQa. When the solution reached room 

temperature after about one hour, Ila had converted almost completely to Dla. The solution 

was filtered and the solvent was removed under vacuum to yield a red-green oily solid. The 

residue was treated with 25 mL of Et,0, and the flask was placed in a sonicating bath for 15 

min to break up the solids. The dark green precipitate was collected on a medium porosity 

fritted glass filter and washed with 3x5 mL portions of Et^O and dried under vacuum. The 

solids were extracted with 25 mL of toluene, and after reducing the extract to one-fourth of its 

volume under vacuum, dark green crystals of Illa (0.735 g, 69%) were obtained by slowly 

cooling the solution to -78"'C. 

Method B. To a cooled (-50'C) slurry of NKPPhj)^ (0.500 g, 0.451 mmol) in toluene 

(10 mL) was added a cooled (-50'C) solution of Cl,C=PN(SiMe,), (0.0619 g, 0.226 mmol) in 
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toluene (5 mL). After warming to room temperature with stirring over the course of an hour, 

the reaction mixture was worked up as above. 

Method C. To a cooled (-50°C) slurry of (Ph3P)2Ni(C3H4) (0.500 g, 0.818 mmol) in 

toluene (10 mL) was added a cooled (-50°C) solution of Cl2C=PN(SiMe3), (0.112 g, 0.409 

mmol) in toluene (5 mL). After warming to room temperature with stirring over the course of 

an hour, the reaction mixture was worked up as above to yield 0.369 g of Ilia (74%). 

"P{ 'H} NMR (toluene, -50°C) (see Scheme 1 for atom labels) for Ila; 5(P(x)) 103.7 (dd, 

= 60.5 Hz, = 24.7 Hz), 5(P(a)) 22.4 (d, = 24.7 Hz), 5(P(b)) 19.0 (d, 

'^b)P(x, = 60.5 Hz). For Ilia: 5(P(x)) 38.0 (dt, Vp,,,p,,, = 57.8 Hz, Vp,,,p,„ = 41.2 Hz), 

5(P(a)) 22.3 (d, Vp,^,p,„ = 57.8 Hz), 5(P(b)) 20.0 (d, Vp,,,p,,, = 41.2 Hz). Anal. Calcd for 

Q.H^CLN.Ni.P.Si, (Ilia): C, 62.17; H, 5.39; N, 1.19. Found: C, 62.08; H, 5.44; N, 

1.25. 

Reaction of Ni(COD),, PEtj and Cl2C=PN(SiMe3)2; Characterization of 

Cl(Et3P)2Ni[C(Cl)=PN(SiMe3)2] (lb). This reaction was carried out as in Method A 

above. The reagents used were Ni(COD)3 (0.100 g, 0.364 mmol), PEt, (0.0859 g, 0.728 

mmol) and CUC=PN(SiMe3), (0.0498 g, 0.182 mmol) in toluene (10 mL). After reaching 

room temperature in about 1 h, a ^'P{ 'H} NMR showed lb as the main product. Compound 

lb decomposed into non-isolable products after one day in solution and was characterized by 

^'P{'H} NMR spectroscopy as discussed in the Results. ^'P{'H} NMR (toluene) (see Scheme 

1 for atom labels): 5(P(x)) 221.7 (t, Vp,,,p,,, = 27.5 Hz), 5(P(a)) 27.7 (d, Vp,,,p„, = 27.5 Hz). 

Conversion of Ni,Cl,(PPh3),[^,-n':Ti'-C(PPh3)=PN(SiMe3)J (Ilia) to 

Ni2CIj(PEt3)2[H,-n':Ti'-C(PPh3)=PN(SiMe3)J (IV). To a cooled (-78°C) THE (5 mL) 

solution of nia (0.0500 g, 0.0424 mmol) was added PEt3 (0.0151 g, 0.128 mmol). After 

warming to -40°C in 15 min with stirring, a ^'P{ 'H} NMR spectrum showed that FV formed 

in essentially quantitative yield. Compound IV decomposed into non-isolable products after 

one day in solution and was characterized by "'P{ 'H} NMR spectroscopy as discussed in the 
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Results. ''P{'H} NMR (THF, -40°C) (see Scheme 2 for atom labels): 5(Pfx)) 39.5 (dt, 

'4x)P(a) = 54.3 Hz, = 49.9 Hz), 5(P(a)) 20.3 (dt, = 54.3 Hz, Vp,,,p,b, = 5.5 Hz), 

5(P(b)) 10.9 (dd, Vp,,,p,,, = 49.9 Hz, Vp,„p„, = 5.5 Hz). 

Preparation of CI(PPh3)Ni[Ti^-C(H)(PPh3)=P(Mes*)] (Mes* = 2,4,6-tri-

fert-butylphenyl) (Va). Method A. To a cooled (-50°C) slurry of Ni(COD)2 (0.500 g, 

1.82 mmol) in toluene (10 mL) was added a cooled (-50°C) solution of PPhj (0.954 g, 3.64 

mmol) and Cl2C=PMes* (0.294 g, 0.909 mmol) in toluene (10 mL). After warming slowly to 

room temperature with stirring, the dark red solution was filtered and the solvent was removed 

under vacuum. The deep red residue was dissolved in acetone (25 mL) and the acetone 

solution was reduced to one-fourth of its volume under vacuum and cooled to -78°C to 

precipitate a mixture of dark red crystals of Va and yellow solids of Ni(PPh3)3Cl. The solids 

were isolated with a filter cannula and washed with 3 xlO mL portions of acetone at 0°C to 

remove the Ni(PPh3)3Cl as a yellow solution. The remaining red solids were dissolved in a 

mixture of toluene (2 mL) and hexanes (6 mL) and cooled slowly to -78°C to form red crystals 

of Va which were isolated and dried under vacuum (0.387 g, 49% based on Cl2C=PMes*). 

Method B. To a cooled (-50°C) slurry of Ni(PPh,)4 (0.500 g, 0.451 mmol) in toluene 

(10 mL) was added a cooled (-50°C) solution of Cl2C=PMes* (0.0729 g, 0.226 mmol) in 

toluene (5 mL). After warming slowly to room temperature with stirring, the reaction mixture 

was worked up as above. 

Method C. To a cooled (-50°C) slurry of (Ph3P)2Ni(C2H4) (0.500 g, 0.818 mmol) in 

toluene (10 mL) was added a cooled (-50°C) solution of Cl2C=PMes* (0.132 g, 0.409 mmol) 

in toluene (5 mL). After warming slowly to room temperature with stirring, the reaction 

mixture was worked up as above to yield 0.121 g of Va (34% based on CUC=PMes*). 

^'P{ 'H} NMR (toluene) (see eq 4 for atom labels): 5(P(a)) 25.5 (d, Vp,^,p(,, = 33.1 Hz), 

5(P(x)) 21.6 (dd, Vp,„p,„ = 33.1 Hz, Vp,,,p,b, =82.5 Hz), 5(P(b)) 17.8 (d, Vp^^.p,,, = 82.5 Hz). 

Anal. Calcd for C55H,oCl,Ni,P, (Va): C, 72.74: H. 6.66. Found: C. 72.60: H, 6.42. 
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Preparation of Br(PPh3)Ni[ri*-C(H)(PPh3)=P(Mes*)] (Vb). To a cooled 

(-50°C) slurry of Ni(COD)i (0.500 g, 1.82 mmol) in toluene (10 mL) was added a cooled 

(-50°C) solution of PPhj (0.954 g, 3.64 mmol) and Br2C=PMes* (0.375 g, 0.909 mmol) in 

toluene (10 mL). After warming slowly to room temperature with stirring, the dark red 

solution was filtered and die solvent was reduced to 5 mL under vacuum. The deep red 

solution was treated with hexanes (40 mL), filtered, and crystals of Vb (0.295 g, 35% based 

on Br2C=PMes*) were obtained by cooling the filtrate slowly to -78°C. ^'P{ 'H} NMR 

(toluene) (see eq 4 for atom labels): 5(P(a)) 26.2 (d, = 30.2 Hz), 6(P(x)) 23.1 (dd, 

= 30.2 Hz, Vp,,,p,b, =85.2 Hz), 5(F(b)) 19.2 (d, Vp,„p,„ = 85.2 Hz). 

Preparation of Br(Cy3P)Ni[Ti^-C(H)(PCy3)=P(Mes*)] (Vc). This reaction 

was carried out as in the preparation of Vb above. The reagents used were Ni(C0D)2 (0.200 

g, 0.727 mmol), tricyclohexylphosphine (PCyj) (0.408 g, 1.45 mmol) and Br2C=PMes* 

(0.150 g, 0.364 mmol) in toluene (10 mL). After wanning slowly to room temperature with 

stirring, the lilac-colored solution was filtered. Compound Vc could not be isolated pure as it 

decomposed during attempted crystallization and was characterized by ^'P{ 'H} NMR 

spectroscopy as discussed in the Results. ^'P{'H} NMR (toluene): 6(P(b)) 32.2 (d, Vp,b)p,„ = 

55.0 Hz), 6(P(a)) 30.1 (d, Vp,„p,„ = 16.5 Hz), 5(P(x)) 5.6 (dd, Vp,„p,„ = 55.0 Hz, Vp,„p(„ 

= 16.5 Hz). 

'^C Labeling Studies of CI(Ph3P)Ni[Ti'-C(H)(PPh3)=P(Mes*)] (Va). The 

compound Cl2'^C=PMes* was prepared by substituting labeled '^CCl4 for CCl^ in the literature 

preparation. This compound was then used to prepare Cl(Ph3P)Ni[r|--'^C(H)(PPh3)=P(Mes*)] 

by using the procedure in Method A above. ^'P{ 'H} NMR (toluene) (see eq 4 for atom labels): 

5(P(a)) 25.5 (dd, Vp,,,p,,, = 33.1 Hz, = 30.7 Hz), 5(P(x)) 21.6 (ddd, Vp,,,p,3, = 33.1 Hz, 

%(MP(b) =82.5 Hz, 7cp = 93.5 Hz), 5(P(b)) 17.8 (dd, Vp,b,p„, = 82.5 Hz, 'y^-p = 57.2 Hz). 

'^C{'H} NMR (toluene): 5(C=P) 24.3 (ddd, 7cp,„ = 93.5 Hz, = 57.2 Hz, V^p.^, = 30.7 
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Hz). '^C NMR (toluene): 5(C=P) 24.3 (dddd, = 145.8 Hz, = 93.5 Hz, 7cp,b, = 

57.2 Hz, Vcp,„ = 30.71 Hz). 

Conversion of Br(PhjP)Ni[n'-C(H)(PPh3)=P(Mes*)] (Vb) to 

Br(Et3P)Ni[Ti^-C(H)(PPh3)=P(Mes*)] (VI). To a THF solution of compound Vb 

(0.050 g, 0.0545 mmol) in an NMR tube was added one equivalent of PEtj (8 pL) at room 

temperature. Compound Vb was converted inunediately and completely to compound VI, 

which was characterized by ^'P{ 'H} NMR spectroscopy as described in the Results section. 

Addition of two more equivalents of PEtj (16 |JJL) did not cause further change. ^'P{ 'H} NMR 

(THPO (see Scheme 2 for atom labels): 5(P(x)) 22.5 (dd, Vp,,,p,b) = 30.2 Hz, = 90.5 

Hz), 5(P(a)) 18.5 (d, Vp,„p,„ = 90.5 Hz), 5(P(b)) -5.5 (d, Vp^^.p,,, = 30.2 Hz). 

X-ray Crystallographic Study of Ni,Cl2(PPh3)2[n2-Ti^:n^-

C(PPh3)=PN(SiMe3)2] (Ilia) Diffraction-quality crystals of Ilia were obtained by 

recrystallization from toluene at -78°C. Data collection and reduction information are given in 

Table 1. A dark green crystal of Ula was mounted on a glass fiber for data collection. Cell 

constants were determined from a set of 25 reflections found by a random search routine. The 

data were corrected for Lorentz and polarization effects. A correction based on nonlinear decay 

in the three standard reflections was applied to the data. An absorption correction based on a 

series of v|/-scans using the semiempirical method was applied. The space group PI was 

unambiguously determined by intensity statistics.26 a successful direct methods solution was 

calculated which provided most non-hydrogen atoms from the E-map. Several full-matrix least 

squares difference Fourier cycles were performed which located the remainder of the non-

hydrogen atoms. All non-hydrogen atoms were refmed with anisotropic displacement 

parameters. Hydrogen atom positions were generated with ideal geometries and refined as 

riding, isotropic atoms. One toluene molecule is disordered over two partially occupied sites. 

The phenyl groups of the triphenylphosphines were used as a model to restrain C-C interatomic 

distances within both unique toluene solvent molecules. A secondary crystallite was 
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unavoidably attached to the specimen used for data collection. An unsuccessful attempt was 

made to determine its orientation so a twin law could be applied. However, eight reflections 

which had F^-» F_," were removed from the least-squares refinement, reducing R1 by about 

2%. Selected bond distances and bond angles are given in Table 2. 

X-ray Crystallographic Study of CI(Ph3P)Ni[Ti^-C(H)(PPh3)=P(Mes*)] 

(Va). Diffraction-quality crystals of Va were obtained by recrystallization at -78°C in 

acetone. Data collection and reduction information are given in Table 1. A dark red crystal of 

Va was mounted on a glass fiber for data collection. An initial set of cell constants was 

calculated from 50 reflections taken from three sets of 20 frames. Final cell constants were 

calculated from a set of 4943 strong reflections taken during the data collection. The space 

group PI was unambiguously determined by systematic absences and intensity statistics.^^ A 

hemisphere-type data collection was employed in which a randomly oriented region of space 

was surveyed to the extent of 1.3 hemispheres to a resolution of 0.87 A. Three major swaths 

of frames were collected with 0.30° steps in co, providing a high degree of redundancy. A 

successful direct methods solution was calculated which provided most non-hydrogen atoms 

from the E-map. Several full-matrix least squares difference Fourier cycles were performed 

which located the remainder of the non-hydrogen atoms. All non-hydrogen atoms were refined 

with anisotropic displacement parameters. Hydrogen atom positions were generated with ideal 

geometries and refined as riding, isotropic atoms, except for the C=P hydrogen atom (H(l)), 

which was refined as an independent atom. PLATON/SQUEEZE was used to remove the 

effects of the disordered toluene solvent molecule on the data.^^ This solvent void was 

approximately 216.4 A^ or 8.6% of the total volume. A total of 41.1 electrons were located in 

the disordered void, and the refinement improved by 1.1% after applying the program. 

Selected bond distances and bond angles are given in Table 3. 
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Results 

Reactions of Ni(0) Complexes with CIjC=PN(SiMe3)2. The reactions 

(Scheme 1) of one-half equivalent of Cl2C=PN(SiMe3)2 with 1:2 Ni(COD)2/PPh3, Ni(PPh3)4 

or (Ph3P)2Ni(C2H4) in toluene at -78°C produce Ni2Cl2(PPh3)2[R2-n':Tl'-C(PPh3)=PN(SiMe3)2] 

(ina) in 69-74% yield. The reaction with (Ph3P)2Ni(C2H4) (Method C) is preferred because it 

produces fewer impurities and gives slightly higher yields. Low temperature (-30°C) ^'P NMR 

monitoring shows complex Ha as the only observable intermediate in these reactions. A 1:1 

Scheme 1 

Ni(PR3)2L + Cl2C=PN(SiMe3)2 
L = COD 
R = Et 

L = (C2H4), (COD), (PPh3)2 
R = Ph 
toluene,-30°C 

CI. ..PEt3 
\i 
/ \ 

EtjP ,C=P 
(a) CI 

lb 

(x^ 
N(SiMe3)2 

CU 

PhjP' 
(b) 

CI, ,PPh3 
;/(a) 

,Ni. 
toluene, 0°C 

Ni(PPh3)2L 

Cl'„.. 

PPh3 
T(ar 

»C^ 

N(SiMe3)2 

Ph3P 
(b) 

".Ni: 
...vCl 

na 

Ni" 

' P ( X )  
(b) 

N(SiMe3)2 

ina 

stoichiometric reaction of (Ph3P)2Ni(C2HJ with Cl2C=PN(SiMe3)2 quantitatively forms Ha at 

-30°C. However, complex Ila could not be isolated and decomposes to unidentified products 

in solution at room temperature. Formation of Ilia occurs upon addition of another equivalent 

of (Ph3P)2Ni(CiH4) to the solution of Ha at 0°C. In this reaction, the remaining C-Cl bond in 

Ila is oxidatively added to (Ph3P)2Ni(C2H4), resulting in the formation of Ilia. Complex Ilia 

is oxygen sensitive in the solid state and in solution but does not react with water; it is 

thermally sensitive and decomposes when heated above 30°C. 
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Compounds Ila and Ilia were characterized by ^'P{ 'H} NMR spectroscopy; the 

structure of nia was established by X-ray diffraction studies. The ^'P NMR spectrum of Ilia 

was collected at -50°C, as signal broadening occurred at room temperature. Excess PPhj 

present in solution enhanced this broadening, and at room temperature the signal for free PPh, 

disappeared. This is most likely due to phosphine exchange, although detailed studies were 

not carried out. Compound Ula exhibits a ^'P NMR spectrum that is consistent with the 

structural data. A proton-coupled ^'P NMR spectrum shows the peak at 5 38.0 as a sharp 

doublet of triplets, which allows assignment of this peak to the C=PR phosphorus P(x), while 

the other two peaks are broadened due to coupling with phenyl protons and are assigned as 

PPhj groups. The characteristic doublet-of-triplets splitting pattern for P(x) allows for 

unambiguous assignments of the peaks; the doublet arises from splitting by the carbon-bound 

phosphine P(a) at 5 22.3 with ~J - 57.8 Hz, and the triplet is caused by the two equivalent 

nickel phosphines P(b) at 6 20.0 with V = 41.2 Hz. Although it is not possible to compare the 

"P NMR properties of Ilia with uncoordinated R3P=C=PR ligands since they are unknown, 

some comparisons with similar compounds can be made. The chemical shift of 5 38.0 for P(x) 

in ina is significandy upfield from that of the phosphaalkene Cl2C=PN(SiMe3), (5 251.7 

ppm)23 and the phosphavinyl phosphonium salt [(Ph3P)(H)C=PN(i-Pr)2]'^ (5 303,5 ppm for 

C=P)^. This is consistent with similar dramatic upfield shifts which occur upon r|"-

coordination of C=P double bonds; for example, Ni(PMe5)2[ri"-(Me3Si)2C=PCH(SiMe3)2] (5 

23.4 ppm for C=P) is 380 ppm upfield from the free phosphaalkene (Me3Si)2C=PCH(SiMe3)^ 

(5 404 ppm).28 The coupling constant of 'J = 57.8 Hz between the C=P phosphorus P(x) and 

the carbon-bound phosphine P(a) in Ilia is smaller than values found for free phosphavinyl 

phosphonium salts, e.g., Vp.p = 124.6 Hz in [(Ph3P)(H)C=PN(/-Pr)2]'^, which also contains an 

R3P-C=PR linkage.^ However, in llla, the C=P phosphorus P(x) has sp^-Iike character, 

which allows for less s-character in the bonding to carbon and would then result in a smaller 

coupling constant between P(x) and P(a). An even smaller Vp.p value of 10.9 Hz was reported 
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in the n'-diphosphaallene complex [(Ph3P),Pt(Ti'-RP=C=PR)]2^ (R = tri-rerr-butyibenzene) 

which contains an RP=C=PR unit with one of the C=P bonds coordinated. The coupling 

constant of V = 41.2 Hz in Hla between the C=P phosphorus P(x) and the two equivalent 

nickel phosphines P(b) that are located cis to P(x) is slightly larger than the coupling constant 

of -Jp^p - 28.6 Hz between P(x) and the PMe, group that is cis to it in Ni(PMe3)2[ti"-

(Me3Si),C=PCH(SiMe3)2],28 most likely because the P(x) lone pair is involved in bonding to 

the nickel atoms in BHa, which allows for more s-character from phosphorus in the P(x)-Ni 

bonds. 

The ^'P NMR spectrum of Ha is similar to that of the analogous compound Va (eq 4). 

The peak at 5 103.7 ppm is assigned to the C=PR phosphorus P(x), since a proton-coupled ^'P 

NMR spectrum showed this peak as a sharp doublet of doublets, while the peaks at 5 22.4 and 

19.0 ppm were broadened by proton coupling, indicative of PPhj groups. The peak for P(x) 

in Ha is 82.1 ppm downfield from the corresponding peak for P(x) in Va. This may be 

partially due to the different R-group on phosphorus or the proton on the carbon in Va instead 

of a chloride in Ha. However, a comparison of the ^'P NMR spectra of two phosphaalkenes 

with different substituents that correspond to the different C- and P-substituents in Ha and Va, 

Cl,C=PN(SiMe3)2 (5 251.7 ppm)^^ anj (Cl)(H)C=PMes* (5 245 ppm)^^, shows that changes 

in these particular substituents do not necessarily impart large changes on the ^'P NMR 

chemical shifts. A better explanation for the large differences in chemical shifts between Ha 

and Va is that the configuration around the C=P bond in Ha (Z) is different than that which 

was determined by X-ray diffraction for Va (£). It is well documented that the E and Z 

configurations of phosphaalkenes can have a large effect on the "'P chemical shift of the C=P 

phosphorus, although it is not possible to predict the relative shifts of the isomers.^ ̂  An 

illustrative example is the phosphaalkene compound [(Ph)(Me,Si)N]C(Ph)=P(Ph), in which 

the E isomer has a chemical shift of 5 225 ppm and the Z isomer is at 5 144 ppm.32 Further 

evidence for the different configurations in Ila and Va is the appreciably smaller value of 
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'•^p(x)P(ai - 60.5 Hz in Ila thian that (= 82.5 Hz) in Va. According to the c/j-rule in 

phosphaalkenes, substituents that are located cis to the phosphorus lone pair show larger 

couplings to the C=P phosphorus atoni,33 as is the case in the E configuration in Va. The 

value of in Ha (60.5 Hz) is also quite similar to that in Ula (57.8 Hz), in which the 

carbon-bound PPhj group and the N(SiMe3), group are arranged in a Z configuration as well. 

In contrast to the reactions above with triphenylphosphine as the ligand, when a 1:2 

Ni(COD)2/PEt3 mixture was reacted with CIjC=PN(SiMe5)j, complex lb formed (Scheme 1). 

This compound did not react further to form the triethylphosphine analogs of Ha or Ilia, even 

when two equivalents of the Ni(0) reagent were added. However, all attempts to isolate lb 

resulted in decomposition to unidentified products. The ^'P NMR spectrum of compound lb, 

5 221.7 (t, Vpp = 27.5 Hz, C=P-R), 27.7 (d, Vpp = 27.5 Hz, Ni-PEtj), is quite characteristic 

of a phosphavinyl structure (Scheme 1), and is very similar to that of a platinum analog 

Cl(Et3P),Pt[C(Cl)=PMes*], 5 234.2 (t, Vpp = 24.7 Hz, C=P-R), 15.0 (d, Vpp = 24.7 Hz, Pt-

PEtj) that was characterized previously by X-ray diffraction studies. 

Reactions of Ni(0) Complexes with XzCsPMes* (X=CI, Br). The 

reactions (eq 4) of one-half equivalent of X^CsPMes* (X = CI, Br) with 1:2 Ni(COD)2/PPh3, 

Ni(PPh3)4 or (Ph3P)2Ni(C3H4) in toluene at -VS'C produce X(Ph3P)Ni[Ti--

C(H)(PPh3)=P(Mes*)] (Va X = CI; Vb X = Br) in moderate yields, along with a roughly 

equimolar amount of Ni(PPh3)3X. This Ni(I) compound was characterized by X-ray 

diffraction studies as the acetone solvate (Ph3P)3ClNi*(Me2C=0), but the structure of a toluene 

solvate of the same compound was reported previously.34 The preparation of Va using 

Ni(C0D)2 PPhj (Method A) is preferred because of the higher yield. The 2:1 metal 

complex to X2C=PMes* stoichiometry is necessary to optimize the yield of product. When 

only one equivalent of metal complex is added, unreacted X2C=PMes* remains in solution, 

while all of the Ni(0) reagent is consumed. Compounds Va and Vb are moderately air stable 

in the solid state, but air sensitive in solution. A similar reaction of 1:2 
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Ni(COD)2/tricycIohexylphosphine (PCyj) with one half equivalent of BrX=PMes* gave an 

analogous product (Vc), which was characterized by its NMR spectrum. 

Compounds Va-Vc were characterized by ^'P{'H} NMR spectroscopy; the structure 

of Va was established by X-ray diffraction studies. A preliminary X-ray-determined structure 

for Vb was also obtained and showed that it was isostructural with Va. However, due to 

disordered solvent molecules, the final refinement was unacceptable for publication. 

Compound Va exhibits a ^'P NMR spectrum that is consistent with the structural data. The 

signal at 5 21.6 is assigned to P(x) based on a proton-coupled ^'P spectrum which showed this 

peak as a sharp doublet of doublets, while the peaks at 6 25.5, assigned to P(a), and 17.8, 

assigned to P(b), were broadened due to phenyl proton couplings. The chemical shift of P(x) is 

significantly upfield from that in Cl,C=PMes* (232.0 ppm)24 and also significantly upfield 

from P(x) in the related complex Ila (103.7 ppm). The greater upfield shift of P(x) in Va, 

along with the larger Vp,^,p,3, coupling constant of 82.5 relative to that in Ha (Vp(^)p(^, = 60.5) is 

indicative of the £ configuration in Va, with the ylidic phosphine group being cis to the C=P 

phosphorus lone pair. The peak at 5 17.8 is assigned to P(b) and shows a cis- = 33.1 

Hz, which is similar to the cis- Vp,b,p(„ = 24.7 Hz found in Ila, and the cis- ~ 28-6 Hz 

found in the ti'-phosphaalkene complex Ni(PMe3)2[ri"-(Me3Si)2C=PCH(SiMe3)2].28 The 

signal for the proton on the C=P carbon atom in Va is obscured by PPhj protons in the 'H 

NMR spectrum, and the presence of this proton was deduced indirectly from the 'H-coupled 

'^C NMR spectrum of '^C-labeled Va, [Cl(Ph,P)Ni[n--'^C(H)(PPh3)=P(Mes*)]. The 

Ni(PR3)2L + X2C=PMes* — 

(L = (C2H4), (COD), (PR3)2) 

Mes* = 2,4,6-tri-r-butylbenzene 
Va (X=Cl, R=R'=Ph) 
Vb (X=Br, R=R'=Ph) 
Vc (X=Br, R=R'=Cy) 
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measured of 145.8 Hz is typical of one-bond sp" C-H coupling constants and is similar to 

'•^cH = 148.4 Hz of the sp" carbon atom in MeCH=C(Me)2.^^ The use of labeled Va also 

allowed for the elucidation of C-P coupling constants and unambiguous assignment of the 

signals in the ^'P NMR spectrum. The 'icpfx) value of 93.5 Hz is similar to ~ 

found in (Me3Si)2C=PMes*,36 and to '/cp(x) = 92.5 Hz found in the phosphavinyl 

phosphonium salt [(Ph3p)(H)C=PN(/-Pr)3]'".^ The value of 57.2 Hz is similar to that 

'•^cH3P = Hz found in the phosphonium salt (PhjF'CHj)!" and is roughly intermediate 

between C-P coupling constants^^ in free (e.g., '7CH2P = 100.7 Hz in Ph3P=CH2) and TI' C-

coordinated (e.g., '/ch2p = 26.1 Hz in (CO)3Ni(CH2PPh3)) phosphorus ylides. Both and 

are larger than the two-bond C-P coupling constant = 30.7 Hz between the Ni-

PPh3 phosphorus and the C=P carbon. The ^'P NMR spectra of Vb and Vc are very similar to 

that of Va; the peaks for P(x) at 5 26.19 for Vb and 8 5.64 for Vc are again split into doublets 

of doublets and do not show any signal broadening in the proton-coupled ^'P NMR spectra. 

Phosphine Substitution Reactions of Ilia and Vb. Compound Ilia reacts 

with two equivalents of triethylphosphine at -40°C to generate Ni2Cl2(PEt3)2[n2-ri':Ti'-

C(PPh3)=PN(SiMe3)2] (FV) in which the PPhj groups on nickel have been substituted by PEtj 

(Scheme 2). However, Compound FV decomposes in solution at -25°C after one day and 
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Scheme 2 

N(SiMe3)2 

IHa 

N(SiMe3)2 

IV 

Mes* 

3 PEtg 

R.T. 

Mes* 
Vb VI 

could not be isolated. Substitution of the carbon-bound PPh3 group was not observed, even 

when three equivalents of PEtj were added and the solution was wanned to room temperature. 

Compound FV was identified by the similarity of its ^'P NMR spectrum to that of IHa. The 

chemical shifts for P(x) at 5 39.5 and P(a) at 5 20.3 are quite similar to those in IHa, 38.0 and 

22.3, respectively. However, the chemical shift for P(b) is now at 5 10.9, 9.1 ppm upfield 

from P(b) in Ula, which indicates that the nickel-coordinated PPhj groups have been 

substituted by PEt,. The coupling constants, = 54.3 Hz and = 49.9 Hz in IV, 

are similar to those in Illa, Vpf^jp,^, = 57.8 Hz and Vp,b,p(,, = 41.2 Hz, indicating that the 

geometry of the molecule is the same. 

Since compound Ilia can be viewed as a triphenylphosphine-donor stabilized 

phosphavinylidene (Ph3P=C=PR), an attempt was made to remove the carbon-bound 

phosphine-donor group to generate the parent phosphavinylidene complex. This was done by 

reacting IHa with 9-BBN dimer (9, 9'-bi-borabicyclo[3.3.1]nonane), which is a known 

phosphine sponge reagent.38 However, no phosphavinylidene compounds were isolated, as 

the reaction results in complete decomposition of the complex with no isolable products. 
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Evidently, the carbon-bound PPh, group in Ilia is much more difficult to substitute or remove 

than the nickel-bound PPh3 ligands, which precludes the formation of a phosphavinylidene 

complex from Ilia. 

Compound Vb reacts with one equivalent of triethylphcsphine at room temperature to 

generate Br(Et3P)Ni[ri--C(H)(PPh3)=PMes*] (VI), in which the PPh, group on nickel has 

been substituted by PEtj (Scheme 2). Substitution of the carbon-bound PPhj group did not 

occur, even when two more equivalents of PEt, were added at room temperature. The ^'P 

NMR spectrum of VI shows very similar splittings and chemical shifts to those of Vb. The 

chemical shifts for P(x) at 8 22.5 and P(a) at 5 18.5 are very similar to those in Vb, 23.1 and 

19.2, respectively. However, the chemical shift for P(b) is now at 5 -5.5, 31.7 ppm upfield 

from P(b) in Vb, which demonstrates that the nickel-coordinated PPh3 group has been 

substituted by PEt3. The coupling constants, = 90.5 Hz and Vp,b,p(,, = 30.2 Hz, are 

similar to those in Vb, = 85.2 Hz and Vp,[„p,^, = 30.2 Hz, indicating that the geometry 

of the molecule is the same. 

Discussion 

Ni,CIj(PPh3)2[)irn^n--C(PPh3)=PN(SiMe3)J (Ilia). Compound Ilia 

contains the first example of a phosphavinylidene phosphorane (R3P=C=PR) ligand, or 

phosphine donor stabilized phosphavinylidene, which acts as a six-electron donor to the two 

nickel atoms in Ilia. Since there are no known examples of related isoelecuronic R3P=C=0, 

R3P=C=NR or R3P=C=S compounds in the chemistry of carbonyl, isocyanide or thiocarbonyl 

ligands, the formation of the R3P=C=PR ligand in Ula illustrates a new type of bonding 

capability in phosphavinylidenes (:C=PR) that is not accessible with the more thoroughly 

studied, isoelectronic CHO, C=NR and C=S ligands. There are some examples of FREE39 and 

coordinated"^®'41 vinylidene phosphoranes R3P=C=CR2, which are carbon analogs of 

R3P=C=PR. However, these compounds are only known to coordinate r\' through the ylidic 
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carbon as two electron donor ligands. The phosphine-donor-stabilized phosphavinylidene 

hgand in Ilia is not formed simply by PPhj attack on a phosphavinylidene complex as 

compound Ha was observed as an intermediate in the reaction. A likely mechanism for the 

formation of compounds Ha and nia is outlined in Scheme 3. The first step in Scheme 3 

Scheme 3 

Ni(PPh3)2L + Cl2C=PN(SiMe3)2 

PhjP. 

cr 
;Ni^ 

Cl' 

-L 
' 

PPh3 

C= = Pv 
N(SiMe3)-

PPh, 

la 

Ck 

Ph,P' 

/ 
CI 

'Ni' 

\ 
N(SiMe3)2 

la' 

CI PPh, 
^ 

PPh, 

\ 

/ 
CI 

Ck 

Ph3P' 
'Ni: 

N(SiMe3)2 N(SiMe3)2 

Ila la" 

involves the oxidative addition of a C-Cl bond from Cl2C=PN(SiMe3)2 to the Ni(0) reagent. 

The product of this addition is the phosphavinyi intermediate la, which could not be observed 

in variable temperature NMR experiments from -50°C to -30°C; at -30°C, compound Ha 

begins to form. However, when triethylphosphine is used in this reaction, the phosphavinyi 

compound Cl(Et3P)2Ni[C(Cl)=PN(SiMe3)2] (lb) forms and was characterized by ^'P NMR 

spectroscopy as discussed in the Results section, which indirectly supports la as an 

intermediate. It is not clear why compound lb does not go on to form triethylphosphine 

analogs of Ha and Ula. Assuming la is an intermediate, it must rapidly isomerize to 

compound Ila, which was characterized by low temperature "P NMR spectroscopy as 

discussed in the Results section. 
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The step involving rearrangement of la to Ha is similar to the intramolecular 1,2 shift 

of PMe, in an n'-vinyl nickel complex (eq 5) to form an --vinyl phosphonium compound.'^^ 

Ph PMe3 

R'CH,CMe,Ph CK ,Jc 
MejP" ;:C=< " 

Ph^ '^=3? C 

5a: R=CH3, 5b: R=CH7SiMe3, ^ COR 
5c: R=CH2CMe3, 5d: R=CH2CMe2Ph, 6d 
5e: R=CH2C6H4-o-Me 

In the structurally characterized ri'-vinyl complex (Me3P)jClNi[PhC=CH(COCH2SiMe3)] 

(5b), the geometry around nickel is planar with a weak Ni-0 interaction (Ni-0 = 2.535(7) A). 

It is interesting to note that the rearrangement to the ri'-vinyl phosphonium compound in eq 5 

was not general, and only in the case of R = CH^CMeiPh did the 1,2 PMe, shift occur to form 

(Me3P)2ClNi[Ti--(Ph)(Me3P)C=CH(COCH2CMe2Ph)] (6d).42 a similar reaction was found 

in a series of Mo and W n'-vinyl compounds which react with PMe3 to generate TI--vinyl 

phosphonium compounds.43 These n'-vinyl phosphonium ligands may be considered as 

carbon analogs of the ri'-phosphavinyl phosphonium ligands in compounds Ila and Va. 

Although no mechanisms were postulated in these transformations, the reactions give precedent 

for the rearrangement of la to Ha, and this isomerization can be rationalized by proposing 

(Scheme 3) the rearrangement of the n'-phosphavinyl (la) to an r|--phosphavinyI intermediate 

(la', la"), which is then attacked by PPhj at the carbon atom to generate Ila. Vinyl, acyl 

and iminoacyl ligands are all known to exhibit both r\' and TI* coordination, and there are some 

examples of coordinated iminoacyl compounds'^ which undergo transformation fromri' to rj" 

coordination with concomitant loss of a phosphine ligand as in the rearrangement of la to la', 

la" in Scheme 3. Structural, spectroscopic and chemical studies of ri'-vinyl^^'^^ and n'-acyl 

ligands^^'^S suggest some influence of a carbene-like resonance form, similar to that (la") 

proposed in Scheme 3. Since the attack of phosphines on carbene ligands is well known,^^ 
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the attack of PPhj on the carbene-like intermediate da") to generate Ila (Scheme 3) is 

reasonable. Further precedent for the postulated attack of PPh, on an ii'-phosphavinyl 

complex is a reaction (eq 6) involving PPh, attack on an n'-vinyl intermediate.^^ There are 

Os(NH3)5 
/ ̂  

^ Me 
H 

(3+) 
^ ^ PPh3 QsCNH3)5 

^ 1 © (6) 
H' p-J—p PPh3 

^Me 

also a few examples of phosphine attack on related TI"-acyl ligands^ (eq 7). A plausible 

.O O 

LnM^ II + PR3 LnMC^ | (7) 

C C 

R '  R 3 P  R' 

explanation for the ease of nucleophilic attack by PPh, on the ti'-phosphavinyl ligand (la', 

la") in Scheme 3 is that the carbene-phosphido resonance structure da") is favored more 

than the alkyl-phosphine resonance form da') because of the known instability of C=P double 

bonds,^'^ which gives more carbene-like character to this intermediate and favors PPh, attack. 

This carbene-like resonance structure in the n'-phosphavinyl ligand da") is precedented by 

the X-ray structure of a similar ri'-phosphavinyl complex of tungsten Cp(C0)2W[Ti'-

C(Ph)=PPh{W(CO)5}] which contained a W-C bond length (1.954(8) A) that is typical of a 

W=C double bond.^^ When another equivalent of the Ni(0) reagent is added to compound Ha 

at 0°C, compound Ula is formed almost quantitatively. This reaction entails oxidative 

addition of the C-Cl bond in Ila to the Ni(0) reagent with subsequent loss of one equivalent of 

PPhj and the formation of dinuclear Ula. It should be noted that in the Z-configuration which 

is postulated for Ila (see Results section), the second equivalent of Ni(0) is sterically able to 

access the open side of the C=P bond to undergo oxidative addition and form the dinuclear 

complex nia. Thus, the reaction pathway oudined in Scheme 3 reasonably accounts for the 

formation of Ila and Ilia. 
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CI(Ph3P)Ni[ri^-C(H)(PPh3)=P(Mes*)] Va. The reactions of Ni(0) complexes 

with Cl2C=PN(SiMe3)T (Scheme 1) and Cl2C=PMes* (eq 4) occur under the same mild 

conditions but give quite different products. In an effort to understand why different R groups 

in the phosphaaikenes (Cl2C=PR) lead to different products, one might assume that both 

reactions proceed by a phosphavinyi phosphonium intermediate such as Ila. As discussed 

above, the reaction of this intermediate with Ni(0) reagents for R = NCStMejj^ leads to the 

dinuclear Ilia (Scheme 3), but when R is the more bulky supermesityl group, oxidative 

addition across the C-Cl bond in the phosphavinyi phosphonium intermediate does not occur. 

Instead, the Ni(0) reagent abstracts a CI atom from this intermediate to generate the Ni(I) 

compounds Ni(PPhj)3Cl, which was isolated from the reaction, and 

Ni(PR3)(X)[C(PR3)=PMes*], which abstracts an H atom to form compound Va. The 

formation of Ni(I) species from reaction of the Ni(II) phosphavinyi phosphonium intermediate 

with the Ni(0) reagent is somewhat similar to the known reaction of Ni(PPh3)4 with 

Ni(PPh3)2Cl2 to generate two equivalents of Ni(PPh3)3CI.^^ Unfortunately, the reaction 

pathway could not be verified as no intermediates could be detected in variable temperature 

(-50°C to 20°C) ^'P NMR studies. In an attempt to identify the source of the H atom in the 

C(H)(PPh3)=PMes* ligand, an experiment was carried out in a dry box in which Ni(PPh3)4 

(0.0903 mmol) was dissolved in distilled QDg (3 mL, no H^O present in 'H NMR) in a flask 

(dried at 150°C for 3 d) and reacted with Cl2'^C=PMes* (0.0451 mmol). Compound Va 

formed, but the proton coupled '•'C NMR specuoim showed the same multiplet (ddd) for the 

C=P carbon as observed when the reaction was performed in non-deuterated toluene; no 

broadening was detected due to deuterium incorporation. Thus, the H atom in the 

C(H)(PPh3)=PMes* ligand does not originate from the solvent. The phosphavinyi 

phosphonium ligands C(H)(PR3)=PMes* in Va-c are the first examples of this type of ligand. 

Structure and Bonding in Ni2CIj(PPh3)2[(i:-n^:r|^-C(PPh3)=PN(SiMe3)2] 

(Ilia). Thermal ellipsoid drawings (Figures I and 2) of complex Ilia show that the nickel 
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atoms are both in planar environments defined by the PPh,, CI, and Ph3P=C=PR ligands (sum 

of angles around nickel atoms are 360.2° for Ni(2) and 362.6° for Ni( I)). The dinuclear 

complex exhibits a "butterfly" geometry, with a long Ni-Ni distance (2.966(7) A) that is 

outside the range of a typical Ni-Ni single bond (2.4-2.7 A).^^ This Ni-Ni distance in Ilia 

(Table 2) is longer than that in dinuclear nickel complexes in which a Ni-Ni bonding interaction 

has been excluded, e.g., d(Ni-Ni) = (2.908(3) A) in [{(Et2PCH2)2Ni}2(^,Ti--PsP)], which is a 

dinuclear complex with a similar butterfly geometry containing a bridging PhP unit,^^ 

d(Ni-Ni) = 2.874(2) A in the A-frame complex [Ni2(^-C=CH2)(dppm)2Br2].^^ The C(l)-P(l) 

distance in Ula (1.707(7) A) indicates some double bond character, as it is more similar to a 

typical C=P double bond as found in Cl2C=PN(SiMe3)2 (1.685(2) A)60 than to that (1.773(8) 

A) of the side-on n-bound phosphaalkene in Ni(PMe3)2[ri--(Me3Si)2CHP=C(SiMe3)2].28 The 

C(l)-P(2) distance (1.709(7) A) is very similar to the C(l)-P(l) distance, and is intermediate 

between typical ylide C-P bond lengths, e.g. 1.661(8) A in Ph3P=CH2,^^ and C-coordinated 

ylide C-P bond lengths, e.g. 1.745(8) A in (CO)3Ni[(H)(Me)C=PCy3].62 The C(l)-P(2) 

distance indicates more ylidic (C -P*) than phosphonium (C-P*) character in the bond, as it is 

significantly shorter than the C-PPhj distance (1.798(14) A) found in the phosphavinyl 

phosphonium salt [(Ph3P)(H)C=PN(/-Pr2)](BFJ.7 The Ni(l)-P(l) and Ni(2)-P(l) distances 

(2.133(2) A and 2.103(2) A, respectively) are much shorter than the nickel-phosphine (Ni(l)-

P(3) and Ni(2)-P(4)) distances (2.202(2) A and 2.195(2) A, respectively) and are also shorter 

than the Ni-P (phosphaalkene) distance (2.239(2) A) found in Ni(PMe3)2[ri'-

(Me3Si)2CHP=C(SiMe3)2].28 The nitrogen atom of the N(SiMe3)2 is in a planar 

environment, which is generally preferred for this group in other structures.^® 

The structure of Ula (Fig. 1) suggests that the novel phosphavinylidene-phosphorane 

ligand (R3P=C=PR) is a six-electron donor, providing two electrons from the ylide carbon, 

two from the C=P double bond and two from the lone pair on phosphorus as shown in L. As 
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mentioned, this ligand can also be considered the first example of a mixed cr, a*-

diphosphaallene, and has much different coordinating abilities than the known 

diphosphaallenes ̂  ^ (J) and cr, cr-diphosphaallenes^ (K) which have only been coordinated 

as two-electron donor ligands through the ylidic carbon in J and through one of the C=P 

double bonds in K. The R3P=C=PR in L ligand is drawn as the ylide rather than ylene form, 

which is a more appropriate representation as ab initio calculations have shown that the short 

C-PR3 bond lengths found in ylides are more due to strong electrostatic attraction between the 

anionic carbon and the cationic phosphorus R^C'-PRj"^ than to a true ylene form R2C=PR3 with 

a C=P double bond.63,64 ^ more appropriate comparison of the bridging phosphavinylidene-

©1/2 ©1/2 
R3P>^ y^PRj 

0® 

* 
(J) 

RPo 
::r=:pR 

(K) 

© 
R3P\© 

^ 1 / \ 
(L) 

phosphorane ligand L is with diimino (M), iminophosphine (N), diphosphene (O) and 

disulfur (P) ligands.These ligands are isolobal with L, when L is drawn in the ylide form. 

R. R 

/ 

R, R 
N=p: N=P^ 

I 0 I d 1 

(M) (N) (O) (P) 

and have the capability of donating two electrons from each lone pair and two electrons from 

the double bond for a total of six electrons, as for L. These ligands are quite different than 

|i2:Ti",Ti'-alkynes which can only donate four electrons to two metal atoms in a dimer. All four 

of the ligand types M-P have been coordinated as six-electron donor ligands in the iron dimers 

7-10.65"^^ The tetrahedrane dimers 7-10 are closely related to Ilia, although they contain 
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r-Bu 
f 
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metal-metal bonds to give an eighteen electron count, while in nia the two nickel atoms have a 

total of sixteen valence electrons each and no metal-metal bond is needed. The bonding in nia 

may be expressed by three resonance structures which are presented in Scheme 4. Resonance 

Scheme 4 
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© 
Ni 

1 
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(c) 

structure (a) may be viewed as a metalla-ylide-phospiiido structure, where the phosphorus 

atom is covalently bonded to one nickel atom and the phosphorus lone pair donates two 

electrons to the other nickel fragment; the carbon atom is also covalendy bonded to one nickel 

atom and the ylide carbon lone pair donates two electrons to the other nickel fragment. Both of 

the nickel atoms are then Ni(n), with the R3P=C=PR group acting as a six-electron donor 

overall. This is quite similar to the bonding in the related dimers 7-10.^^"^^ The short Ni( l)-

P( 1) and Ni(2)-P( 1) bond lengths support a contribution from this phosphido-type of 

resonance form, and the short C( I)-P(2) bond length is explained by the electrostatic attraction 
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between the adjacent charges on the cationic P(2) and anionic C(l) in this resonance form. 

Resonance structures (b) and (c) are formulated as zwitterionic structures where the minus 

charge is located on the nickel atom that is bound rj- to the C=P double bond, while the other 

nickel atom coordinates to the R3P=C=PR ligand as an ti'-phosphavinyl (three electron donor) 

ligand. In structures b and c, the anionic nickel atom is formally Ni(0), while the neutral 

nickel atom is formally Ni(II). Here the R3P=C=PR group acts as a five-electron donor ligand. 

The short C(l)-P(l) bond length suggests some contribution from these two resonance 

structures. 

Structure and Bonding in CI(Ph3P)Ni[Ti^-C(H)(PPh3)=P(Mes*)] (Va). 

The structural drawing (Figure 3) of complex Va shows that the nickel atom is in a planar 

environment defined by the PPhj, CI, and [C(H)(PPh3)=PR] ligands (sum of angles around 

the nickel atom is 359.3°). The carbon-bound PPhj and the Mes* groups are situated in a trans 

arrangement across the C(l)-P(l) bond. The H, PPhj and Mes* groups are bent back from 

planarity in the C(H)(PPh3)=PMes* unit, indicating a pyramidalization at C(l) and P(l). This 

is seen in both the dihedral angle of C(1I)-P(1)-C(1)-P(2) = -123.1(3)° and in the sum of 

angles around C(I) = 343.5°. This indicates that C(l) is roughly intermediate between sp* and 

sp^ hybridization, which is similar to sunctural features of ti"-coordinated olefins and 

phosphaalkenes.28 The C-P distances can be compared with those found in the phosphavinyl 

phosphonium salt [(Ph3P)(H)C=PN(/-Pr2)](BF4),^ which is a cationic analog of the 

C(H)(PPh3)=PMes* ligand in Va, differing only in the R-group on phosphorus. The C(l)-

P( 1) distance in Va (1.796(5) A) is much longer than the analogous C=P distance found in 

[(Ph3P)(H)C=PN(/-Pr;.)](BF4) (1.684( 14) A). This is consistent with the lengthening of C=P 

bonds which occurs upon tj"-coordination of phosphaalkenes, and in fact the C(l)-P(l) 

distance in Va (1.796(5) A) is quite similar to the C=P distance (1.773(8) A) in the n"-

phosphaalkene complex Ni(PMe3),[ri--(Me3Si)2CHP=C(SiMe3)2].28 xhe C(I)-P(2) distance 

(1.742(5) A), although shorter than the C( I )-P( I) distance, is longer than a typical ylide C-P 
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bond length, e.g., 1.661(8) A in Ph3P=CH3,61 but shorter than the corresponding Ph3P-C 

bond (1.798(14) A) in [(PPh3)(H)C=PN(i-Pr3)](BFj. The Ni-C(l) distance in Va (1.977(5) 

A) is the same within error as the Ni-C distances (1.97( 1) and 1.95(2) A) in the related TI"-vinyl 

phosphonium compound (Me3P)2ClNi[Ti"-PhC=CH(COCH2CMe2Ph)] (6d, eq 5).^^ The Ni-
0 

P(l) distance in Va (2.1793(13) A) is the same within error as the Ni-P(3) distance 

(2.1783(14) A) which suggests the lack of participation of aNi-P(l) phosphido-like resonance 

structure as observed in Ilia. 

Compound Va is the first example of a complex containing a coordinated phosphavinyl 

phosphonium ligand. A few examples of uncoordinated phosphavinyl phosphonium salts 

[(R3P)RC=PR]"^ have been reported in the literature and the structure of 

[(PPh3)(H)C=PN(i-Pr2)](BF4) was determined by X-ray diffraction.^ The NMR spectra of 

these compounds, along with the X-ray evidence, suggest that there is a contribution from both 

resonance forms d and e in Scheme 5, and these compounds have also been referred to as cr, 

CT'^-diphosphaallyl cations (resonance form f). However, we find no evidence for allyl-like 

Scheme 5 

H n© H ~1© H ~1© 

/R' ^C^©/R' -—- .R' 
RjP^ ^P^ RjP-^ ^P^ RjP^^-^P^ 

©1/2 ©1/2 
(d) (e) (f) 

behavior in the (Ph3P)(H)C=PMes* ligand which is bound TI" through the C(l)-P(l) bond in 

Va as opposed to ri^ through the P(2)-C(l)-P(l) allyl-like unit as in compounds of the type 

(R3P)(X)Ni[Ti^-allyl]. There are a few examples of n^-coordinated cr, cr-diphosphaallyl 

ligands,68-71 but the (Ph3P)(H)C=PMes* group in Va is best viewed as a phosphavinyl 

phosphonium ligand. Since it is generally accepted that the short bond lengths found in ylide 

C-P bonds are caused by an electrostatic interaction and not a genuine 7t-bond, and there are no 

structurally characterized examples of ri'-C=PR, coordinated ylide compounds, the ri^-
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coordination of the (Ph3P)(H)C=PMes* ligand in Va is unlikely, and further supports the lack 

of n-bonding in ylides. 

The bonding in compound Va may be described as a mixture of two resonance 

structures as shown in Scheme 6. Resonance form g can be viewed as an ylide-phosphido 

Scheme 6 

structure with a dative two electron donation from C( 1) and a covalent, phosphido-type bond 

between P( I) and nickel. Here the (Ph3p)(H)C=PMes* ligand donates three electrons to the 

thirteen-electron nickel fragment, which is formally NifEI). Resonance form h can be viewed 

as an n'-phosphavinyl phosphonium cation (1+) coordinated to a formally Ni(0) metal 

fragment. This is a zwitterionic structure with the minus charge located on nickel and the C=P 

double bond acting as a two-electron donor. The somewhat short C(I)-P(2) distance found in 

Va suggests a contribution from form g in Scheme 6. However, the Ni-P(I) distance is 

typical of Ni-phosphine bonds, and is not indicative of a phosphide structure, suggesting more 

of a contribution from resonance form h. Unlike structure nia, the C=P phosphorus lone pair 

is unavailable for bonding in this structure, as it is pointing down and away from the metal 

center. The resonance structures in Scheme 6 are quite similar to those postulated for the 

related ri'-vinyl phosphonium compound (Me3P)2ClNi[Ti--

(Ph)(Me3P)C=CH(COCH3CMe,Ph)] (6d, eq 5).42 
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© 
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The structure of Va exhibits an interesting feature in that it contains a somewhat 

distorted, boat-shaped supermesityi ring with the P(l) atom located 1.09 A out of the plane of 

the carbon atoms in the arene ring. This is most Ukeiy a steric effect, as compound Va is quite 

bulky and the supermesityi ring is forced to bend back away from the nickel-bound P( 1) atom 

in order to alleviate steric strain, with a concomitant puckering of the ring. Calculations have 

shown that in very bulky substituted-phenyl rings in which the substituents are forced to bend 

out of the plane of the ring, a similar puckering of the aromatic ring occurs in order to maintain 

the greatest amount of delocalization in the ring, and such distortions were calculated to be 

favorable with much of the electron delocalization (aromaticity) of the ring remaining.^2,73 

other sterically encumbered supermesityi systems, a similar puckering of the ring is observed 

(Table 4). The cell coordinates and atomic positions for the compounds in Table 4 were 

obtained from the literature references and entered into CSC Chem 3D Plus™ (Version 3.1.1, 

Cambridge Scientific Computing) in order to ascertain the deviation from planarity in the rings. 

The first column of data represents the average deviation from planarity of the six carbon atoms 

making up the Mes* ring in the given compound, while the second data column gives the 

distance that the P or In atom is displaced out of the average plane defined by the six ring 

carbon atoms of the supermesityi ring. As can be seen in Table 4, all of these compounds 

show similar distortions as those in Va to varying degrees and the most sterically crowded 

systems seem to show the greatest distortions. In the iron-coordinated diphosphene complex 

Cp(C0)2FeP=PMes* (12)^^, in which there is no steric interference between the Mes* group 

and the rest of the complex, there is no deviation from planarity in the ring and the phosphorus 

atom is only 0.123 A out of the plane of the ring. However, when the P=P bond is n'-

coordinated to the bulky Pt(PPh3)2 moiety in Pt(PPh3)2[ri--Cp(CO)jFeP=PMes*] (13),^^ the 

Mes* ring becomes puckered with an average deviation from planarity in the ring C-atoms of 

0.040 A, and the phosphorus atom is situated 0.562 A out of the average plane of the ring. 

The compound In(Mes*),Br (11)^^ exhibits a structure that is perhaps the most sterically 
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same atom. Correspondingly, this structure exhibits the greatest deviation of the heteroatom 

out of the average plane of the ring (1.44 A), but its average deviation from planarity in the ring 

(0.057 A) is similar to that of compounds 1 (0.061 A), 2 (0.052 A) and Va (0.073 A). Thus, 

puckering of the ring and bending out of the plane of the P( 1) atom in "Va are most likely 

caused by steric congestion in the molecule, and this type of distortion is similar to that 

observed in other sterically bulky compounds containing Mes* rings. 

Summary 

Oxidative addition reactions of Ni(0)-PPh3 reagents with Cl2C=PN(SiMe3)2 results in 

formation of the first example of a phosphavinylidene phosphorane ligand (Ph3P=C=PR'), 

which may also be viewed as a cr, a^-diphosphaallene, coordinated as a six-electron donor 

ligand in the dinuclear nickel butterfly dimer Ni3Cl2(PPh3),[^2-n':n'-C(PPh3)=PN(SiMe3)J 

(ina) (Scheme 1, Fig. 1). A phosphavinyl phosphonium intermediate Cl(Ph3P)Ni[Ti--

C(Cl)(PPh3)=PN(SLMe3)2] (Ha) was identified in this reaction and most likely results from 

PPhj attack on an ri'-phosphavinyl intermediate that reacts like an elecurophilic carbene 

(Scheme 3). The Ph3P=C=PR' ligand in Ilia is isolobal with diimine (RN=NR), 

iminophosphine (RN=PR), diphosphene (RP=PR) and disulfur (RS=SR) ligands, which also 

act as dibridging six-electron donors. A similar reaction using PEt3 instead of PPh3 resulted in 

formation of the n'-phosphavinyl compound Cl(Et3P)2Ni[C(Cl)=PN(SiMe3)i] (lb). In 

contrast, when the same Ni(0)-PPh3 reagents are reacted with X2C=PMes* (X = CI, Br; 

Mes*=2,4,6-tri-f-butylbenzene), the phosphavinyl phosphonium compounds X(Ph3P)Ni[n"-

C(H)(PPh3)=P(Mes*)] (Va,b) form along with Ni(PPh3)3X (eq 4). A similar reaction using 

PCy, instead of PPh, formed an unstable PCy, analog (Vc) of Va. The difference in reactivity 

between Cl2C=PN(SiMe3)3 and Cl2C=PMes* with Ni(0) reagents is likely due to the greater 

steric bulk of the Mes* group which prevents the formation of a dimer analogous to Ilia. 
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Compound Va is the first example of a metal complex containing a phosphavinyl phosphonium 

ligand (C(H)(PPh3)=PMes*), which may also be viewed as an r|"-coordinated cr, a"*-

diphosphaallyl ligand coordinated as a three-electron donor (Scheme 6). This compound also 

exhibits a somewhat distorted supermesityl ring, which is likely due to steric constraints in the 

molecule and has been observed in other bulky supermesityl-containing compounds. 
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Table 1. Crystal and Data Collection Parameters for Ni2CU(PPh,)2[|i-ri":ii"-

C(PPh3)=PN(SiMe3)J (Ula) and Cl(Ph3P)Ni[n'-C(H)(PPh,)=P(Mes*)] (Va). 

Ilia Va 
formula C^H^Cl^NNi^P^Si, 5̂8 S0̂ 54CNiP3 

space group PT PT 

a, A 10.904(2) 10.7005(8) 

b, A 17.073(3) 12.968(1) 

c, A 18.936(3) 20.350(2) 

a, deg 86.42(1) 74.537(1) 

deg 86.60(2) 83.690(1) 

X.deg 79.24(2) 68.106(1) 
0 ̂  

V, A^ 3452(1) 2525.1(4) 

Z 2 2 

^CALC G/cm^ 1.311 1.255 

crystal size, mm 0.25 X 0.12x0.03 0.4 X 0.34 X 0.02 

/i, mm ' 2.921 0.570 

data collection instrument Siemens P4RA Siemens SMART 

radiation (monochromated in Cu Ka(X= 1.54178 A) Mo Ka (X=0.71073 A) 

incident beam) 

temp, K 213(2) 173(2) 

scan method 29-e Area Detector, o>-frames 

data collection range, 2.34-56.82 1.75-24.11 

e, deg 

no. of data collected 9814 10481 

no. of unique data total 9227 7384 
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Table 1. (continued) 

Ilia Va 
with I> 2a (I) 9207 5879 

no. of parameters refined 840 613 

trans factors; max; min 0.78/0.55 0.818/0.649 

R" (I>2a (I)) 0.0699 0.0622 

RJ (I>2a (I)) 
quality of fit indicator^ 
largest peak, e/A'^ 

0.1753 

1.052 
0.642 

0.1378 
1.090 
0.610 

'R = ZllFJ-IF^ll/llFJ. = [Zvv(IFJ-IF,l)VxvvlFJ-]"'-; w = l/<r(lFol). 'Quality -of-fit = 

[Iw(IF,l-IFJ)V(iV„bs-^parameters)]"'-
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Table 2. Selected Bond Distances (A) and Angles (deg) for Ni2Cl2(PPh3)2[^-n':Ti"-

C(PPh3)=PN(SiMe3)2] (Ilia). 

Distances (A) 

Ni(l)-Ni(2) 2.966(7) Ni(2)-C(l) 2.036(7) C(l)-P(2) 1.709(7) 

Ni(I)-C(l) 1.983(7) Ni(2)-P(l) 2.103(2) P(l)-N(l) 1.684(6) 

Ni(l)-P(l) 2.133(2) Ni(2)-P(4) 2.195(2) N(l)-Si(l) 1.773(6) 

Ni(l)-P(3) 2.202(2) Ni(2)-Cl(2) 2.205(2) N(l)-Si(2) 1.795(6) 

Ni(l)-Cl(l) 2.231(2) C(l)-P(l) 1.707(7) 

Bond Angles (deg) 

P(l)-C(l)-P(2) 144.4(4) C(l)-Ni(2)-P(4) 162.4(2) 

C(l)-Ni(l)-P(l) 48.8(2) C(l)-Ni(2)-C!(2) 104.2(2) 

C(l)-Ni(l)-P(3) 158.1(2) P(l)-Ni(2)-Cl(2) 152.57(9) 

C(l)-Ni(l)-Cl(l) 101.5(2) P(4)-Ni(2)-Cl(2) 93.41(8) 

P(l)-Ni(l)-Cl(l) 147.54(10) P(l)-Ni(2)-P(4) 113.85(9) 

P(3)-Ni(l)-CI(l) 94.01(9) P(l)-N(l)-Si(l) 121.7(3) 

P(l)-Ni(l)-P(3) 118.28(9) P(l)-N(l)-Si(2) 119.3(3) 

C(l)-Ni(2)-P(l) 48.7(2) 

"Numbers in parentheses are estimated standard deviations in the least significant digits. 
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Table 3. Selected Bond Distances (A) and Angles (deg) for Cl(Ph3p)Ni[ri'-

C(H)(PPh3)=P(Mes*)] (Va). 

Distances (A) 

C(l)-P(l) 1.796(5) Ni-Cl 2.2338(12) C(13)-C(14) 1.389(6) 

C(l)-P(2) 1.742(5) P(l)-C(ll) 1.892(4) C(14)-C(15) 1.391(6) 

Ni-C(l) 1.977(5) C(l)-H(l) 0.86(4) C(15)-C(16) 1.394(6) 

Ni-P(l) 2.1793(13) C(ll)-C(l2) 1.421(6) C(16)-C(ll) 1.432(6) 

Ni-P(3) 2.1783(14) C(12)-C(13) 1.393(6) 

Bond Angles (deg) 

P(l)-C(l)-P(2) 118.5(3) C(ll)-C(12)-C(13) 118.5(4) 

C(l)-Ni-P(l) 50.92(13) C(12)-C(13)-C(14) 123.0(4) 

C(l)-Ni-P(3) 157.11(13) C(13)-C(14)-C(15) 116.4(4) 

C(l)-Ni-CI 105.68(13) C(14)-C(15)-C(16) 123.1(4) 

P(l)-Ni-P(3) 106.98(5) C(15)-C(16)-C(ll) 118.1(4) 

P(l)-Ni-Cl 156.24(5) C(16)-C(ll)-C(12) 117.8(4) 

P(3)-Ni-Cl 95.68(5) 

"Numbers in parentheses are estimated standard deviations in the least significant digits. 
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Table 4. Deviations From Planarity in Supermesityl Rings. 

„ , C Atom® P (or In) 
Compound Deviation (A) Deviation" (A) 

Pt(PEt3)2Cl[(Cl)C=PMes*] (D-^ 0.061 0.668 

(Et3P),CIPt[ti-(C=PMes*)]Pt(PEt3)CI (2)'' 0.052 0.499 

Cl(Ph3P)Ni[Ti'-C(H)(PPh3)=P(Mes*)] (Va)= 0.073 1.09 

In(Mes*),Br (11)^ 0.057 1.44 

Cp(C0)2FeP=PMes* (12)® 0.000 0.123 

Pt(PPh3)2[Ti--Cp(CO)3FeP=PMes*] (13)" 0.040 0.562 

a) Average deviation of ring C atoms from ring plane. 

b) Deviation of P (or In) from average carbon ring plane. 

c) Ref. 12. 

d) Ref. 12. 

e) This work. 

f) Ref. 75. 

g) Ref. 73. 

h) Ref. 74. 
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Figure Captions 

Figure 1. Thermal ellipsoid drawing of NijCl2(PPh3)2[H2-n':Ti--C(PPh3)=PN(SiMe3)2j (Ilia) 

Figure 2. Thermal ellipsoid drawing of Ni2Cl2(PPh3)2[n2-n^:n^-C(PPh3)=PN(SiMe3)2] (Ilia) 

with phenyl and methyl groups removed. 

Figure 3. Thermal ellipsoid drawing of CI(PPh3)Ni[Ti--C(H)(PPh3)=P(Mes*)] (Va) 
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PALLADIUM COORDINATION COMPOUNDS OF c'X'-

PHOSPHORANES: FIRST EXAMPLES OF PHOSPHONIO-

METHYLENE(IMINO)METALLOPHOSPHORANE 

[(R3P)(Me3Si)C=P(ML„)=NSiMe3] AND PHOSPHONIO-

METHYLENE(OXO)PHOSPHORANE 

[(R3P)(Me3Si)C=P(=0)NSiMe3] LIGANDS 

Wayde V. Konze, Victor G. Young, Jr.", and Robert J. Angelici* 

Department of Chemistry. Iowa State University, Ames, lA 50011 

Abstract 

The oxidative addition reaction of PdfPPh,)^ with CUC=PN(SiMe3)3 forms the phosphavinyl 

phosphonium complex Cl(Ph3P)Pd[Ti--CfCI)(PPh3)=PN(SiMe3)J (lUa) which results from 

PPh, migration from Pd to carbon in the n'-phosphavinyl intermediate trans-

Cl(Ph3P)2Pd[C(CI)=PN(SiMe3),] (Ila). TTie reaction of Pd(dba)(dppe) with 

Cl2C=PN(SiMe3)2 forms the n'-phosphavinyl complex c/5-Cl(dppe)Pd[C(CI)=PN(SiMe3)2] 

(VI), which does not undergo phosphine migration. Compound Ilia undergoes substitution 

of the chloride ligand by PPh3 or MeCN in the presence of KPF^ to generate [(Ph3P)-,Pd(ri'-

C(Cl)(PPh3)=PN(SiMe,),)] (PF,) (IV) or [(Ph3P)(MeCN)Pd(Ti--C(Cl)(PPh3)=PN(SiMe3)3)] 

(PFg) (V), respectively; the structure of V was determined by X-ray diffraction studies. The 

reaction of Pd(PEt3)^ with ClX=PN(SiMe3), forms the n'-phosphavinyl complex trans-

Cl(Et3P);Pd[C(Cl)=PN(SiMe3)2] (lib), which does not undergo PEt, migration. When two 

equivalents of PdCPEtj)^ are reacted with CUC=PN(SiMe3); the phosphonio-

methylene(imino)metallophosphorane complex Pd(PEt3)(Cl)[ji-Ti';Ti--

C(SiMe3)(PEt3)=P=N(SiMe3)]Pd(PEt,)Cl (Vlla-b) forms as a 1:1 isomeric mixture. 

Compound Vlla-b reacts with Mel or .\al to generate Pd(PEt,)(I)[u-ri':n'-
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C(SiMe3)(PEt3)=P=N(SiMe3)]Pd(PEt3)I (VTIIa-b) and reacts with traces of water to generate 

CI(Et3P)Pd[ri--C(SiMej)(PEt3)=P(=0)NH(SiMe3)] (IX). The structure of Vlllb was 

partially determined, and the structure of IX was determined by X-ray diffraction studies. 

Compounds VHa-b, Vllla-b and IX exhibit the first examples of coordinated 

methylene(imino, oxo)phosphorane ligands. 

t X-Ray Crystallographic Laboratory, Chemistry Department, University of Mirmesota, 

Minneapolis, MN 55455 

Introduction 

Carbon-phosphorus multiply-bonded ligands have received much attention recently 

because of the rich coordination chemistry that they afford. In particular, the C=P double 

bonds in several different types of ligands have been found to exhibit a preferential TI*-

coordination mode in many transition metal complexes. Several examples of ri'-coordinated 

phosphaalkenes are known, and there are examples of n"^-coordinated diphosphaallyl 

complexes,^"^ in which two bonds having C=P double bond character are coordinated; in 

addition, a few examples of ri"-coordinated diphosphaallenes have been reported.^ There are 

also examples of cyclic phosphorus-substituted ligands including TI'*-phosphacycIobutadienes, 

n^-phosphacyclopentadienyls and n^-phosphabenzenes in which delocalized rings containing 

C=P double bonds are coordinated to U-ansition metal complexes. The propensity for r|*-

coordinadon of C=P double bonds is especially evident in phosphallenes (A) which coordinate 

through the C=P double bond in preference to the C=C double bond. 1in view of the 

O NR 
\ C=C=P 

/ 

(A) (B) (C) 
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many different coordination compounds with ligands containing C=P double bonds, it is 

interesting that there are none of methylene(oxo)phosphoranes R2C=P(=0)R (B) or 

methylene(inuno)phosphoranes R2C=P(=NR)R (C). These compounds are included in a 

recent review of three-coordinate pentavalent phosphorus compounds (cr'x.^-phosphoranes) 

and constitute an area of recently increased study. In these methylene(oxo, 

imino)phosphoranes, the C=P double bond should allow for TI'-coordination to a transition 

metal, although such complexes have not been previously discussed. 

We recendy succeeded in preparing the first example of a coordinated isocyaphide 

(:C=PR) ligand by oxidative addition of the C-X bond in the phosphavinyl complex (1) (eq 1) 

to generate a diplatinum complex [(Cl)(Et3P)Pt(n-C=PR)Pt(PEt3)2(Cl)] (2) containing a semi-

bridging :C=PR group. A series of phosphavinyl compounds X(R'3P)2M[C(=PR)X] 

Pt(PEt3)4 + Cl2C=PR 
(R = Mes*, 2,4,6-tri-rerf-butylbenzene) 

i 
' PEt3 PEt, 

/PEt3 pt(PEt3)4 ?tC ' 
/Pt. ^ / \ / ^C1 (1) 

EtaP /C=P^ Et3P C 
CI R p' 

(1) (2) ^ 

(M = Pt, Pd; X = CI, Br; R' = Ph, Et; R = 2,4,6-tri-ferf-butylbenzene) analogous to (1) were 

prepared and in all cases exhibited a novel R-group migration from phosphorus to carbon to 

generate Mes*C=P and M(PR'3)2X2. Romanenko and coworkers reported the reaction of 

Pd(PPh3)^ with Cl2C=PMes* which resulted in the formation of Mes*C=P and Pd(PPh3),Cl2 

with no observable intermediates (eq 2). The Mes* group rearrangement in these reactions 

Pd(PPh3)4 + CL2C=PMes* ^ Mes*-C=P + Pd(PPh3)2Cl2 (2) 

(Mes* = 2,4,6-tri-rerr-butylbenzene) 

prompted us to attempt similar oxidative addition reactions between dihalophosphaalkenes 

containing non-aromatic R-groups and low-valent transition metals. In the course of these 
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studies, we have prepared (eq 3) and structurally characterized the first example of a 

complex (4) containing a phosphavinylidene phosphorane (Ph3P=C=PR) ligand, which forms 

from an intermediate phosphavinyl phosphonium complex (3) which was not isolated. In a 

similar reaction (eq 4) with Mes* as the R-group, we were able to isolate and structurally 

Ni(PPh3)4 + Cl2C=PN(SiMe3)2 

1 
PPhj 

CI, PPh3 I 

Civ. ^4 Ni(PPh3)4 Cl„.^^ ..CI 
Ni. ..Nl (3) 

Ph3P^ PhsP^ ^P^ PPh3 

N(SiMe3)2 N(SiMe3)2 

(3) (4) 

characterize the first example of a complex (5) containing a phosphavinyl phosphonium 

ligand. In these reactions, the R-group migration from phosphorus to carbon was avoided and 

PhgR H 

C 
Ni(PPh3)4 + Cl2C=PMes* Ni"^ I (4) 

(Mes* = 2,4,6-tri-r-butylbenzene) Ph3P 

(5) Mes* 

an interesting PPhj migration to the C=P carbon afforded the new ligands. The reactions in eq 

3-4 were postulated to involve TI'-phosphavinyl intermediates similar to that (1) in eq 1, which 

then rearranged to TI"-phosphavinyl complexes having carbene-like character which facilitated 

the attack of PPhj on the C=P carbon atoms. 

In our continuing studies of oxidative addition reactions of dihalophosphaalkenes with 

low valent transition metal complexes, we explore in the present paper reactions of 

Cl2C=PN(SiMe3)2 with Pd(0) complexes. During the course of these studies, we isolated a 

stable phosphavinyl phosphonium complex that is the palladium analog of the unstable nickel 

complex (3) (eq 3) and explored ligand substitution reactions to generate a series of these 

complexes with n"-(R5P)(Cl)C=PR Ugands acting as three electron donors (D). We have also 
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isolated the first example of a complex with a phosphotiio-

methylene(imino)metallophosphorane ligand ri--coordinated to one palladium center and n'- to 

another in a dinuclear complex (E). This new ligand results from a l,3-SiMe3 migration from 

nitrogen to carbon and was further functionalized by a hydrolysis reaction into the first example 

of a phosphonio-methylene(oxo)phosphorane ligand, which is ri^-coordinated to a palladium 

atom with the (RjP)(Me3Si)C=P(=0)NSiMe3 ligand acting as a three-electron donor (F). The 

ligands in E and F represent the first examples of transition metal-coordinated 

methylene(imino)phosphoranes and methylene(oxo)phosphoranes, respectively. Although 

^3^ /IMEJ MEGSI PR3 

r A 
-C R3P. p CI 

RjP^ 1 ^p. R 
^Pd:7 i p<^ 

R3P ^p .Pd ^ 
S. yi SiMe3 * 
V ^ I Me3Si— 

PR3 

(D) (E) (F) 

these ligands contain phosphonio substituents on the C=P carbon atoms, their ^^-coordination 

through the C=P double bond opens up the possibility of coordinating other members of this 

well known class of o^X^-phosphoranes. 

The preparations of complexes of types D, E and F are discussed, along with 

substitution reactions, likely pathways of formation and chemical reactivity. Structure and 

bonding in the complexes containing these new ligands are also examined. 

Experimental Section 

General Procedure. All manipulations were carried out under a dry, oxygen-free 

argon atmosphere, using standard Schlenk techniques. Solvents were reagent grade and dried 

by refluxing over appropriate drying agents under nitrogen. Tetrahydrofuran (THF) and 

diethyl ether (Et^O) were distilled over sodium benzophenone ketyl, while hexanes, toluene 
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and dichloromethane were distilled over CaH;,. Acetonltrile was distilled over anhydrous 

MgSO,. 

The 'H NMR spectra of compounds were recorded on a Varian VXR 300-MHz 

spectrometer with TMS (5 0.00 ppm) as the internal standard. The ^'P{ 'H} and ^'P NMR 

spectra were recorded on a Bruker AC 200-MHz spectrometer using 85% H3PO4 (5 0.00 ppm) 

as the external standard. The '^C{ 'H} and '^C NMR spectra were recorded on a Bruker DRX 

400-MHz spectrometer using CDCI3 as the intemal standard. Electrospray mass spectra were 

recorded on a Finnigan TSQ 700 spectrometer using CHjCl^ as solvent. FAB mass spectra 

were recorded on a Kratos MS 50 spectrometer using THF as solvent. The compounds 

Pd(dppe)(dba),18 PdCPPhjj.Cdba),!^ PdCPPhj),,!^ pd(PEt3)320 and Cl2C=PN(SiMe3),21 

were prepared by literature methods. Phosphine ligands were purchased from Strem and used 

without further purification, with the exception of PPhj, which was recrystallized from MeOH. 

Preparation of CI(Ph3P)Pd[Ti^-C(CI)(PPh3)=PN(SiMe3)2] (Ilia) through 

Intermediates (Ph3P)2Pd[ri^-C(CI)2=PN(SiMe3)j] (la) and trans-

Cl(Ph3P)jPd[C(CI)=PN(SiMe3)J (Ila). To a cooled (-50°C) slurry of PdCPPhj)^ (1.00 

g, 0.865 mmol) in CHiCl, (20 mL) was added Cl2C=PN(SiMe3)2 (0.261 g, 0.952 nmiol). 

The initially light yellow solution was warmed slowly with stirring. A ^'P{ 'H} NMR 

spectrum taken after the initial addition (-50°C) showed la as the only intermediate. After the 

solution was allowed to warm slowly to 0°C, the color turned dark red. A ^'P{ 'H} NMR 

spectrum was taken (0°C) and showed traces of la along with Ha as the main product. When 

the solution reached room temperature after about 1 h. Ha had converted almost completely to 

Ilia, along with formation of Pd(PPh3);Cl2 (characterized by comparison of its ^'P NMR 

spectrum with that of an authentic sample.22 The solution was fdtered and the solvent was 

removed under vacuum from the filtrate to yield a red oily solid. The residue was treated with 

25 mL of THF, the red solution was filtered to remove Pd(PPh3)iCli and the filtrate was 

reduced to 2 mL. After adding 20 mL of hexanes and cooling to 0°C, a light yellow precipitate 
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formed which was collected on a medium porosity fritted glass filter, washed with 3x5 mL 

portions of hexanes and dried under vacuum to give analytically pure Ella (0.580 g, 74% 

based on Pd). NMR (CHjCI,) (see Scheme 1 for atom labels) for la, -50°C: 5(P(x)) 

41.8 (dd, = 35.3 Hz, = 23.4 Hz), 5(P(a)) 25.8 (d, = 23.4 Hz), 5(P(b)) 

21.3 (d, Vp,b,p(,, = 35.3 Hz). For Ila, 0°C: 5(P(x)) 213.9 (t, Vp,„p,„ = 50.1 Hz), 5(P(a)) 22.3 

(d, = 50.1 Hz). For ffla, 25°C: 5(P(x)) 124.4 (d, = 91.4 Hz), 5(P(a)) 25.8 

(dd, Vp(3,p(^, = 91.4 Hz, Vp(^,p,b, = 10.1 Hz), 5(P(b)) 21.3 (d, Vp(b)p(a) = 10.1 Hz). Electrospray 

MS (for nia): m/e 870 (M^-Cl), 608 (M^-(CI+PPh3)). Anal. Calcd for C^H^gCUNiPjPd.Si, 

(Ilia): C, 57.05; H, 5.34; N, 1.55. Found: C, 56.75; H, 5.46; N, 1.68. 

Preparation of [(Ph3P)2Pd(ii^-C(Cl)(PPh3)=PN(SiMe3)j)] (PF^) (IV). 

Method A. To a cooled (-50°C), stirred slurry of Pd(PPh3)4 (1.00 g, 0.865 mmol) in 

CHjCU (20 mL) was added Cl2C=PN(SiMe3)2 (0.261 g, 0.952 mmol) and KPF^ (0.319 g, 

1.73 mmol). The initially Ught yellow solution turned red upon warming slowly to room 

temperature with stirring over a period of about 1 h. The solution was filtered, the filtrate was 

reduced to 5 mL, and 25 mL of hexanes was added to form a yellow precipitate, which was 

collected on a medium porosity fritted glass filter and washed with 3x10 mL portions of Et^O 

to yield 0.715 g of crude product. A ^'P NMR spectrum (in CH^Cl,) showed that this 

precipitate contained almost pure IV, with a small amount ( 5%) of [Pd(PPh3)3Cl] (PFg) 

(characterized by comparison of its ^'P NMR spectrum with literature values)23. Further 

attempts to purify compound IV resulted in decomposition with formation of [Pd(PPh3)3Cl] 

(PFg) and unidentifiable products. 

Method B. To a solution of Cl(Ph3P)Pd[Ti--C(Cl)(PPh3)=PN(SiMe3)2] (Ilia) 

(0.100 g, 0.110 mmol) in CHXU (5 mL) was added PPhj (0.0318 g, 0.121 mmol) and KPF^ 

(0.0223 g, 0.121 mmol). After stirring for 30 min the solution was filtered, the filtrate was 

reduced to 5 mL, and 25 mL of hexanes was added to form a yellow precipitate, which was 

collected on a medium porosity fritted glass filter and washed with 3x10 mL portions of EL,0. 



www.manaraa.com

77 

A "P NMR spectrum in CH^CK showed that this precipitate contained FV with a small amount 

of [Pd(PPh3)3CI] (PFg) impurity which could not be separated. ^'P{ 'H} NMR (CD^Cl,, 0°C) 

(see Scheme 2 for atom labels): 6(P(x)) 118.2 (ddd, = 123.6 Hz, = 32.5 Hz, 

= 5.1 Hz), 5(P(a)) 25.1 (ddd, = 123.6 Hz, = 20.1 Hz, = 20.6 

Hz), 5(P(b)) 17.4 (ddd, = 20.1 Hz, Vp,b,p,,, = 11.9 Hz, Vp,„p,,, = 5.1 Hz), 5(P(c)) 13.8 

(ddd, Vp(^,p(„ = 32.5 Hz, Vp^.jp,,, = 20.6 Hz, Vp,,,p,b, = 11.9 Hz), 6(PF6) -144 (sept., 7pp = 

709.1 Hz). Electrospray MS: wi/e 870 (M"-PPhj), 608 (MMCl+PPh,)). 

Preparation of [(Ph3P)(MeCN)Pd(n'-C(CI)(PPh3)=PN(SiMe3)2)] (PFJ 

(V). Method A. To a cooled (-30°C), stirred slurry of Pd(PPh3)4 (1.00 g, 0.865 mmol) in 

MeCN (30 mL) was added Cl2C=PN(SiMe3)T (0.261 g, 0.952 mmol) and KPFg (0.319 g, 

1.73 mmol). The initially light yellow solution turned red upon warming slowly to room 

temperature with stirring over a period of about 1 h. The solution was filtered, the filtrate was 

reduced to 5 mL and a mixture of 15 mL hexanes and 15 mL Et^O was added with stirring. 

The resulting red precipitate was collected by filter cannula, redissolved in minimal MeCN, 

filtered and cooled slowly to -30°C. After approximately 3 days at -30°C, compound V 

separated from the solution as clear crystals (0.445 g, 49%). 

Method B. To a stirred solution of Cl(Ph3P)Pd[Ti--C(Cl)(PPh3)=PN(SiMe3)2] (Ilia) 

(0.500 g, 0.552 mmol) in MeCN (20 mL) at room temperature was added KPFg (0.112 g, 

0.608 mmol). The solution was stirred for 15 min and filtered over Celite to remove KCl. The 

filtrate was reduced to 3 mL and a mixture of 15 mL hexanes and 15 mL Et^O was added with 

stirring. The resulting red precipitate was collected by filter cannula and redissolved in minimal 

MeCN; the solution was then filtered and cooled slowly to -30°C. After approximately 3 days 

at -30°C, compound V was separated from the solution as light yellow crystals (0.357 g, 

61%). 'H NMR (CD3CI3, 25°C): 5 7.1-7.7 (30H, PPh,), 1.66 (s, 3H, MeCN), 0.15 (s, 

18H, N(SiMe3),). ''P{'H} NMR (CD^CU, 25°C) (see Scheme 2 for atom labels): 5(P(x)) 

132.8 (d, Vp,„p,„ = 97.0 Hz). 5(P(a)) 28.0 (dd, Vp,,,p,,, = 97.0 Hz, -Vp,,,p,„ = 6.4 Hz), 6(P(b)) 
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21.1 (d, Vp,b,p,3, = 6.4 Hz), SCPFg) -144 (sept., '/pp = 709.5 Hz). Electrospray MS: m/e 870 

(M*-MeCN), 608 (MMMeCN+PPhj)). Anal. Calcd for C45H5,CI,F5N2P4Pd,Si,: C, 51.19; 

H, 4.87; N, 2.65. Found: C, 50.90; H, 4.85; N, 2.66. 

Conversion of [(Ph3P)(MeCN)Pd(Ti'-C(Cl)(PPh3)=PN(SiMe3)2)] (PFg) 

(V) to CI(Ph3P)Pd[Ti'-C(CI)(PPh3)=PN(SiMe3)J (IHa). To a stirred solution of 

[(Ph3P)(MeCN)Pd(Ti--C(Cl)(PPh3)=PN(SiMe3),)] (PFJ (V) (0.100 g, 0.0947 mmol) in 

CH.Cl, (10 niL) at 25"'C was added (Ph3P)3N*Cr (PPNCl) (0.109 g, 0.189 mmol). After 

stirring for 5 min, a ^'P NMR spectrum showed quantitative conversion to Cl(Ph3P)Pd[ri'-

C(Cl)(PPh3)=PN(SiMe3),] (Ilia). 

Preparation of cK-Cl(dppe)Pd[C(Cl)=PN(SiMe3)2] (VI). To a solution of 

Pd(dppe)(dba) (1.00 g, 1.35 mmol) in CHjCl, (30 mL) was added Cl2C=PN(SiMe3)2 (0.371 

g, 1.35 mmol). The color turned from dark orange to light yellow immediately after the 

addition. After stirring for 5 min, the solution was filtered and the solvent was removed from 

the filtrate under vacuum to yield a light yellow oily-solid residue. The residue wzis stirred 

vigorously with 20 mL Et^O to produce a yellow precipitate which was collected on a medium 

porosity fritted glass filter. The precipitate was washed with 2x10 mL EL,0, followed by 3x5 

mL MeCN to give pure VI (0.745 g, 71%). ^'P{ 'H} NMR (CD^CL, 25°C) (see eq 5 for atom 

labels): 5(P(x)) 230.1 (dd, Vp,,,p,b, = 41.8 Hz, Vp,„p,,, = 29.9 Hz), 5(P(a)) 55.8 (dd, Vp,,,p,„ = 

29.9 Hz, Vp,,,p,,, = 22.1 Hz), 5(P(b)) 41.9 (dd, Vp(,,p,„ = 41.8 Hz, Vp^^p,,, = 22.1 Hz). 

Preparation of frans-CI(Et3P)2Pd[C(CI)=PN(SiMe3)2] (lib) through 

Intermediate (Et3P)2Pd[r|^-C(Cl)2=PN(SiMe3)2] (lb). To a stirred solution of 

Pd(PEt3)3 (1.35 g, 2.93 mmol) in hexanes (20 mL) at 0°C was added dropwise 

Cl2C=PN(SiMe3)2 (0.803 g, 2.93 mmol). The color changed from orange to almost colorless 

during the addition. A ^'P NMR spectrum taken after 5 min of stirring at 0°C showed 

quantitative formation of (Et3P)2Pd[ri--C(Cl)2=PN(SiMe3)2] (lb). The solution was allowed 

to warm slowly to room temperature and stirred for 1 h. A ^'P NMR spectrum showed that all 
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of lb had converted to rra/25-Cl(Et3P);Pd[C(Cl)=PN(SLMe3)2] (lib). The solution was 

reduced to 5 mL under vacuum, filtered, and cooled slowly to -78°C to form colorless crystals 

of En>. Compound lib melts at 10°C and could not be isolated in pure form as it contains 

small amounts of Pd(PEt3)2Cl2 (characterized by comparison of its ^'P NMR spectrum with an 

authentic sample). 

^'P{ 'H} NMR (hexanes) (see Scheme 3 for atom labels); for lb, 0°C: 5(P(x)) 38.0 (dd, 

'•^pu)p(b) = 38.5 Hz, Vp,„p,„, = 24.8 Hz), 5(P(a)) 5.5 (dd, = 24.8 Hz, Vp(,,p,b, = 5.5 Hz), 

6(P(b)) 4.0 (dd, Vp,b,p,,, = 38.5 Hz, = 5.5 Hz). For Hb, 25°C: 6(P(x)) 223.8 (t, 

Vp(,,p(3) = 33.4 Hz), 5(P(a)) 16.1 (d, Vp,^,p,,, = 33.4 Hz). '^C{ 'H} NMR (hexanes); for lib, 

25°C: 8(C=PR) 191.0 (dt, 7cp,„ = 135.1 Hz, = 9.6 Hz). 

Synthesis of Pd(PEt3)(CI)[^-Ti':ri^-

C(SiMe3)(PEt3)=P=N(SiMe3)]Pd(PEt3)CI (Vlla-b) through Intermediate 

(Et3P)jPd[ri^-C(Cl)2=PN(SiMe3),] (lb). To a stirred solution of Pd(PEt3)3 (1.58 g, 3.43 

mmol) in hexanes (25 mL) at 0°C was added dropwise Cl2C=PN(SiMe3)2 (0.470 g, 1.71 

mmol). The color remained orange during the addition. A ^'P NMR spectrum taken after 5 

min of stirring at 0°C showed a mixture of (Et3P)2Pd[Ti"-C(Cl)2=PN(SiMe3)2] (lb) and 

unreacted Pd(0). The solution was warmed quickly to room temperature and stirred for 15 min 

during which time the color turned red. Stirring was then stopped, and the flask was allowed 

to sit at room temperature overnight to form crystals of Pd(PEt3)(Cl)[^-Ti':Ti--

C(SiMe3)(PEt3)=P=N(SiMe3)]Pd(PEt3)Cl (Vlla-b). The filtrate was removed by cannula and 

the crystals were washed with 3x5 mL hexanes and dried under vacuum to give pure VUa-b 

(0.824 g, 57%). ''P{ 'H} NMR (THF) (see Scheme 3 for atom labels); for Vila: 5(P(x)) 

194.9 (dd, Vp,„p,„ = 18.0 Hz, Vp,,,p,„ = 8.3 Hz), 5(P(a)) 38.2 (dd, Vp,,,p,„ = 18.0 Hz, Vp^.^p.^, 

= 5.5 Hz), 5(P(b)) 27.2 (ddd, Vp,b)p(e, = 63.3 Hz, Vp,b,p(,) = 8.3 Hz, Vp,b)P(a) = 5.5 Hz), 5(P(c)) 

16.2 (d, Vp,„p,b, = 63.3 Hz). For Vllb; 5(P(x)) 182.2 (ddd, Vp,,,p,„ = 16.8 Hz, Vp^^.p,,, = 5.5 

Hz, Vp,,,p,„ = 5.5 Hz), 5(P(a)) 31.3 (dd, Vp,,,p,„ = 16.8 Hz, Vp,„p,„ = 16.5 Hz), 5(P(b)) 26.0 
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(ddd, Vp,b,p,c) = 55.0 Hz, Vp,b,p,^, = 16.5 Hz, = 5.5 Hz), 5(P(c)) 14.0 (dd, Vp(,,p,b, = 

55.0 Hz, = 5.5 Hz). Anal. Calcd for C25Hg3CUN,P4Pd2Si, (mixture of Vila and 

Vllb) C, 35.68; H, 7.55; N, 1.66. Found; C, 35.20; H, 7.31; N, 1.49. 

Synthesis of Pd(PEt3)(I)[^i.n':Ti^-C(SiMe3)(PEt3)=P=N(SiMe3)]Pd(PEt3)I 

(Vina-b). To a stirred solution of Pd(PEt3)(CI)[ii-ii':ri"-

C(SiMe3)(PEt3)=P=N(SiMe3)]Pd(PEt3)CI (VHa-b) (0.200 g, 0.238 mmol) in THF (10 mL) 

was added Mel (0.101 g, 0.713 mmol). After stirring for 24 hours at room temperature, the 

color had changed from orange to deep red. The solvent was removed under vacuum and the 

red, oily residue was taken up in 35 mL Et^O. The solution was filtered quickly, and the 

filtrate was cooled slowly to -30°C to form red crystals. A ^'P NMR spectrum showed the red 

crystals to be composed of approximately 90% Vlllb and 10% VHIa. Yield: (0.0635 g, 

24%). ^'P{'H} NMR (THF) (see Scheme 4 for atom labels) (for Villa): 6(P(x)) 196.8 (d, 

%x,P(a, = 18-3 Hz), 5(P(a)) 37.2 (dd, Vp,„p,„ = 18.3 Hz, Vp,,,p,„ = 7.0 Hz), 5(P(b)) 21.5 (dd, 

'W) = 71.1 Hz, Vp,„p,,, = 7.0 Hz), 5(P(c)) 17.4 (d, Vp,,,p,„ = 71.1 Hz); (for Vlllb): 

5(P(x)) 183.9 (d, Vp,,,p,,, = 17.2 Hz), 5(P(a)) 30.7 (dd, Vp,,,p,„ = 17.2 Hz, Vp,„p,b, = 15.1 Hz), 

5(P(b)) 19.8 (dd, Vp,b,p,„ = 61.0 Hz, Vp,,,p,,, = 15.1 Hz), 6(P(c)) 13.1 (d, Vp^^p^^, = 61.0 Hz). 

Preparation of CI(Et3P)Pd[n'-C(SiMe3)(PEt3)=P(=0)NH(SiMe3)] (IX). To 

a stirred solution of Pd(PEt3)(Cl)[n-n':Ti'-C(SiMe3)(PEt3)=P=N(SiMe3)]Pd(PEt3)Cl (VHa-b) 

(0.100 g, 0.118 mmol) in THF (10 mL) was added deionized, degassed HjO (4.28 nL, 0.238 

mmol). After stirring for 5 min at room temperature, the color had changed from orange to 

dark orange. The solvent was reduced to 5 mL and 25 mL of EtjO was added with stirring. 

The solution was filtered, and the filtrate was cooled slowly to -78°C to form yellow crystals. 

The crystals were isolated by removing the mother liquor with a cannula and washing with 3x5 

mL hexanes at 0°C to yield pure IX (0.058 g, 82%). ^'P{ 'H} NMR (THF) (see Scheme 4 for 

atom labels) 5(P(x)) 80.0 (d, Vp,,,p,b, = I l.O Hz), 5(P(a)) 37.1 (d, Vp,,,p,b, = 8.3 Hz), 5(P(b)) 
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24.2 (dd, Vp,b,p(„ = 8.3 Hz, Vp,b,p(„ = 11.O Hz). FABMS: m/e 598 (M*-H), 561 (M"-(H+C1)), 

338 (M^-CH+Cl+Pd+PEtj)). 

X-ray Crystailographic Analyses of [(Ph3P)(MeCN)Pd(Ti^-

C(CI)(PPh3)=PN(SiMe3)2)] (PFJ (V) and CI(Et3P)Pd[n^-

C(SiMe3)(PEt3)=P(=0)NH(SiMe3)] (IX). Diffraction-quality crystals of V were 

obtained by recrystallization from acetonitrile at -30°C; crystals of EX were obtained from EtjO 

at -30°C. Data collection and reduction information are given in Table 1. A colorless crystal of 

V and a yellow plate-like crystal of EX were mounted on glass fibers for data collection. Initial 

sets of cell constants were calculated from reflections taken from three sets of 20 frames, 

oriented such that orthogonal wedges of reciprocal space were surveyed to produce orientation 

matrices determined from 91 reflections in V and 114 in EX. Final cell constants were 

calculated from a set of 6961 strong reflections in V and 5673 in EX taken during the data 

collections. Hemisphere-type data collections were employed in both structure determinations 

in which randomly oriented regions of space were surveyed to the extent of 1.3 hemispheres to 
0 

a resolution of 0.84 A. Three major swaths of frames were collected with 0.30° steps in co. 

The space group C2/c was unambiguously determined in V, and Fdd2 in EX by systematic 

absences and intensity statistics.24 Successful direct methods solutions were calculated which 

provided most non-hydrogen atoms from the E-maps. Several full-matrix least squares / 

difference Fourier cycles were performed which located the remainder of the non-hydrogen 

atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters. 

Hydrogen atom positions were generated with ideal geometries and refined as riding, isotropic 

atoms. The structure of V contained three acetonitrile solvent molecules, and the PF^ anion 

was split between two sites with 0.50:0.50 site occupancy, with one of the sites showing 

disorder. 102 restraints were used altogether. The structure of IX contained one Et^O solvent 

molecule which was disordered on a two-fold axis. Several ethyl groups were also disordered, 
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and 260 total restraints were used. Selected bond distances and bond angles for V and IX are 

given in Tables 2 and 3. 

Results 

Reactions of PPhj or dppe Complexes of Pd(0) with Cl2C=PN(SilVIe3)2. 

The reaction (Scheme 1) of PdCPPh,)^ with 1.1 equivalent of CliC=PN(SiMe3), at -50°C in 

CHjCIj results in the formation of the phosphavinyl phosphonium compound Cl(PhjP)Pd[Ti"-

C(Cl)(PPh3)=PN(SiMe3)2] (Ilia). Variable temperature (-50°C to 25°C) ^'P NMR monitoring 

Scheme 1 

CH CI Ph3P^— C 
Pd(PPh3)4 + Cl.C=PN(SiMe3). (b) ^Pd-^ll 

-30 C ph3p-- p 

(la) ^ 
N(SiMe3)2 

Ph3P CI 
(a)1 / 

0°C 

• ' (a)PPh3 
\ -^9 20°C ' ^ 

PdC^ 1 CI—Pd—C^ 
Ph3P'^ P(x) I ^P(x) 

V . ^(SiMe3), 
(ina) N(SiMe3)2 (jja) 

of the reaction solution shows two intermediates (Scheme I). At -50°C, the only species 

present is the TI'-phosphaalkene complex (PPh3)2Pd[TI--C(CU)=PN(SiMe3)2] (la) and free 

PPh3. Upon warming to 0°C, la undergoes oxidative addition of one of the C-Cl bonds to 

form the phosphavinyl compound rranj-Cl(Ph3P)2Pd[C(Cl)=PN(SiMe3)2] (Ha). After the 

solution reaches room temperature and is stirred for 3 hours, compound Ella is the only 

product, along with a small amount of Pd(PPh3),Cl2. When the reaction is carried out with 

only two equivalents of PPhj using Pd(dba)(PPh3)2 and I.l equivalent of Cl,C=PN(SiMe3)-, in 

CHjCU, compound Ilia forms at the same temperature in the same amount of time. 
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However, if less polar solvents (e.g., THF, hexanes, toluene) are used, la still forms but 

decomposes to unidentified products instead of isomerizing to Ila and ffla. 

Compounds la, Ila and Ilia were characterized by their ^'P and ^'P{ 'H} NMR 

spectra; compound Ula was further characterized by elemental analysis and electrospray mass 

spectroscopy. Compound Ilia is air stable in the solid state, but air sensitive in solution. The 

peaks corresponding to P(x) in the ^'P NMR for compounds la. Ha and Ula are conveniently 

assigned by proton-coupled ^'P NMR, in which the P(x) signal remains sharp, while the PPhj 

signals are broadened dramatically by the phenyl protons. The assignment of la as an TI"-

coordinated phosphaalkene is consistent with the chemical shift for P(x) at 5 41.8 which is 210 

ppm upfield from Cl2C=PN(SiMe3)3.21 This is similar to the upfield shift of 266 ppm found 

for the P(x) phosphorus atom in (Ph3P)2Pt[ri--Ph3C=PMes] relative to free Ph2C=PMes.2 The 

peak for P(x) in la is split into a doublet of doublets = 35.3 Hz, = 23.4 Hz) by 

the two inequivalent PPh, groups on Pd, which is also consistent with the proposed ri"-

structure. In Ila, the chemical shift (5 213.9) for P(x) is 172 ppm downfield from that in la in 

the region (200-350 ppm)25 typical of uncoordinated C=P double bond compounds and is 

now split into a triplet = 50.1 Hz) by the two equivalent PPhj groups on Pd. This is 

consistent with the proposed rra/zj-phosphavinyl structure of Ha and is quite similar to the ^'P 

NMR spectra (5 223-243 ppm, Vpp = 25-43 Hz) of a series of rra«j-phosphavinyl compounds 

of the type X(Et3P),M[C(X)=PMes*] (X = CI, Br; M = Pd, Pt; Mes* = tri-tert-

butylphenyl). in compound Ilia, where a PPhj group has migrated from palladium to the 

C=P carbon atom, the chemical shift of P(x) is 5 124.4 ppm, which is far upfield from P(x) in 

uncoordinated phosphavinyl phosphonium cations (e.g., in [(Ph3P)(H)C=PN(/-Pr)2] (BFJ, 5 

303.5),26 consistent with the n'-coordinated structure in Scheme 1. The peak for P(x) in Ula 

is split into a doublet with a large coupling constant (Vp,„p(^, = 91.4 Hz) by the carbon-bound 

PPhj group. This is analogous to the large Vpp coupling constants found in the uncoordinated 

phosphavinyl phosphonium cations (e.g., in [(Ph,P)(H)C=PN/Pr,] (BF4), Vpp = 124.6 
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Hz).26 Further evidence for the structure of Ilia is the similarity of its ^'P NMR spectrum 

(see Experimental) to that of the cationic MeCN analog [(Ph3P)(MeCN)Pd(Ti"-

C(Cl)(PPh3)=PN(SiMe3)2)] (PF^) (V), which was characterized by X-ray diffraction. 

The reaction (eq 5) of Pd(dppe)(dba) with one equivalent of Cl2C=PN(SiMe3)2 in 

CHiClj at room temperature results in the formation of aj-Cl(dppe)Pd[C(Cl)=PN(SiMe3),] 

y^PPhj 
CH.CU \ |(b) CI 

Pd(dppe)(dba) + Cl2C=PN{SiMe3)2 ^ PhoP—Pd—C 
(dba = dibenzylideneacetone) (a) I ^P(x) 

CI ' 
N(SiMe3>, 

(VI) 

(VI). This compound contains a chelating phosphine and did not rearrange further to form a 

phosphavinyl phosphonium compound as in the formation of Ilia. The ^'P NMR spectrum of 

VI exhibits a signal for P(x) at 5 = 230.1 ppm which is split into a doublet of doublets 

= 41.8 Hz, Vp(^)p,3, = 29.9 Hz) by the two inequivalent phosphorus atoms in the chelating dppe 

ligand. The chemical shifts and coupling constants are quite similar to those in the previously 

characterized cis- CI(Ph3P)2Pt[C(CI)=PMes*] (P(x): 5 234.6 dd, = 45.4 Hz, Vp,^,p(3, = 

22.5 Hz). 15 

Substitution Reactions of CI(Ph3P)Pd[Ti^-C(Cl)(PPh3)=PN(SiMe3)jl 

(Ilia). The reaction (Scheme 2) of Cl(Ph3P)Pd[ri"-C(Cl)(PPh3)=PN(SiMe3),] (IQa) with 

1.1 equivalent of PPh3 and 2 equivalents of KPF^ in CHiCl, at room temperature results in the 
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Scheme 2 

KPFe. PPh3 Ph3P\ 
(c) .PdC" I 

JM r-fc D PhjP 

N(TMS) OOIa) N(TMS)2 

Ph3^^ 

MeCN^ V 

PhjP 
(b) 

(V) N(TMS)2 

substitution of the CI' ligand by PPh3 to form the cationic complex [(Ph3P)2Pd(Ti'-

C(CI)(PPh3)=PN(SiMe3)2)] (PFg) (FV) along with a small amount of [Pd(PPh3)3Cl] (PFg)^^ 

which could not be separated. Compound FV was also prepared by the addition of 1.1 

equivalent of Cl2C=PN(SiMe3)i and 2 equivalents of KPF^ to a cooled (-50°C) solution of 

Pd(PPh3)4 in CHiCl,. When compound FV is dissolved in MeCN at room temperature, one of 

the PPhj ligands is substituted by MeCN to form [(Ph3P)(MeCN)Pd(ri"-

C(Cl)(PPh3)=PN(SiMe3)2)] (PF^) (V). Compound V was also prepared by the addition of l.l 

equivalent of Cl2C=PN(SiMe3), and 2 equivalents of KPFg to a cooled 

(-30°C) solution of Pd(PPh3)4 in MeCN, but is best prepared by substitution of the CI" ligand 

in Cl(Ph3P)Pd[Ti--C(Cl)(PPh3)=PN(SiMe3)J (ffla) with MeCN, in the presence of KPFg. 

When compound V is isolated and dissolved in CD^CU, its 'H NMR spectrum shows a signal 

for the coordinated MeCN ligand. However, when V is dissolved in CDjCN, the signal for 

the coordinated MeCN group disappears, indicating that the coordinated MeCN ligand 

undergoes exchange with the CD3CN solvent. When compound V is treated with PPNCl at 

room temperature, the MeCN ligand is immediately displaced by CI' to form compound Ilia. 
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Compound V is air sensitive in solution, but only slightly air sensitive in the solid state. These 

substitution reactions are summarized in Scheme 2. 

Compound FV was characterized by ^'P NMR spectroscopy and electrospray mass 

spectroscopy, while compound V was characterized by 'H NMR and ^'P spectroscopy, 

electrospray mass spectroscopy, elemental analysis and X-ray diffraction studies. The peaks 

corresponding to P(x) in the ^'P NMR spectra of compounds IV and V are conveniently 

assigned from their proton-coupled "'P NMR, in which the P(x) signals are sharp, but the 

PPhj signals are broadened dramatically by the phenyl protons. The chemical shifts of P(x) in 

rV (5 118.2) and V (5 132.8) are similar to that for P(x) in Ilia (5 124.4) which is consistent 

with an ri"-coordinated phosphavinyl phosphonium ligand in all of these complexes. As also 

found for ELIa, compounds FV and V both show characteristically large Vp,^,p,3, coupling 

constants (123.6 Hz in FV and 97.0 Hz in V) between the phosphonium substituent and the 

C=P phosphorus atom. In FV, the signal for P(x) is also split into a doublet of doublets by 

P(b) (Vp(^)p(b) = 5.1 Hz) and P(c) = 32.5 Hz); the larger value for is consistent 

with PPhj being situated trans to P(x).27,28 MeCN ligand in V exhibits a signal in the 'H 

NMR spectrum at 1.66 ppm which is 0.28 ppm upfield of free MeCN (5 1.94) and similar to 

other N-coordinated MeCN ligands.-^ 

Reactions of Pd(PEt3)3 with Cl2C=PN(SiMe3)i. The reaction (Scheme 3) of 

Pd(PEt3)3 with one equivalent of CUC=PN(SiMe3)2 in hexanes at 0°C results in the formation 

of the PEtj analog of Ha, rra/2^-Cl(EtjP)jPd[C(Cl)=PN(SiMe3)3] (Hb). Low temperature 

(0°C) ^'P NMR monitoring of the reaction shows the PEtj analog of la, (Et3P)-,Pd[ri"-

C(Cl)2=PN(SiMe3)3] (lb) as the only observable intermediate in the reaction. When the 

solution reaches room temperature and is allowed to stir for 1 hour, one of the C-Cl bonds in 

compound lb undergoes oxidative addition to Pd to form lib along with a small amount of 

Pd(PEt3)2Cl3. 
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Scheme 3 

hexanes ^ 
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N(SiMe3)2 

Et-iP SiMe 

(a)PEt 
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N(SiMe3)2 

(VHa-b) 
(Two Isomers) 

(Hb) 

When Pd(PEt3)3 is reacted (Scheme 3) with one-half equivalent of Cl2C=PN(SiMe3)2 in 

hexanes at 0°C, ^'P NMR monitoring of the reaction solution again shows lb as an 

intermediate along with free Pd(PEt3)3. However, upon warming the solution to room 

temperature and stirring for 30 min, orange crystals of the 1:1 isomeric mixture of 

Pd(PEt3)(Cl)[n-n':ri"-C(SiMe3)(PEt3)=P=N(SiMe3)]Pd(PEt3)Cl (VHa-b) begin to form. 

After sitting overnight, the crystals of VHa-b are isolated and the remaining filtrate contains a 

small amount of dissolved VHa-b along with Hb, which forms as a by-product. In order to 

determine whether Hb is an intermediate that forms before VHa-b, a sample of Hb was 

dissolved in hexanes and one equivalent of Pd(PEt3)3 was added; no reaction was evident after 

several hours of stirring at room temperature, which strongly suggests that Hb is not a 

precursor to VHa-b. 

Compounds lb and Hb were characterized by ^'P NMR spectroscopy; the spectra of 

these compounds were quite similar to those of la and Ha (see Experimental) and assignments 

of the peaks were made in a similar manner (see results of IHa). The 1:1 mixture of isomers 

VHa-b was characterized by ^'P NMR spectroscopy and elemental analysis as well as by the 
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similarity of the spectra of Vlla-b to those of Vllla-b (see Experimental); the structure of 

Vnib was determined by a partially succesful X-ray diffraction study. The peaks 

corresponding to P(x) in the ^'P NMR of compounds Vlla-b are conveniently assigned by 

proton-coupled ^'P NMR spectroscopy which shows that the P(x) signal remains sharp, while 

the PEt, signals are broadened dramatically by the ethyl protons. A ^'P-^'P COSY experiment 

was undertaken which showed that the very complex ^'P NMR spectrum of VTIa-b results 

from the presence of two isomers as opposed to a large palladium cluster; it also allowed for 

the assignment of the P-P coupling constants. The exact nature of the different isomers in 

VHa-b could not be determined but is likely due to E/Z isomers around the P=N double bond. 

E/Z isomers are known in iminophosphines (RN=PR)30 and imino(methylene)phosphoranes 

(RN=P(R)=CR2),3 ' and the chemical shift difference in P(x) between Vila (5 194.9) and 

vnb (5 182.2) is similar to the difference found in the E/Z isomers around the P=N double 

bond in Me3SiN=P[N(SiMe3)3]=C(H)Me (5 105.5, 98.1).^^ However, because of the 

complexity of the molecule this assignment of the isomers must be regarded as tentative. The 

chemical shifts of P(x) in Vila and VTIb may be compared with that in the uncoordinated 

imino(phosphoranylidenemethyl)phosphane compound [(MeiN)3P](Me3Si)C=P=N(SiMe3) (5 

407.5 (C=P=N)),33 which differs from the ligand in Vlla-b only by the P(Me,N)3 group on 

carbon instead of a PPh, group; the upfield shifts of P(x) in Vlla-b are indicative of TI"-

coordination of the C=P double bond; such shifts are also known to occur upon t]'-

coordination of phosphaalkenes. 

Reactions of Pd(PEt3)(CI)[^-ri':n"-

C(SiMe3)(PEt3)=P=N(SiMe3)]Pd(PEt3)CI (Vlla-b). When the isomeric mixture of 

VHa-b is reacted (Scheme 4) with three equivalents of Mel in THF at room temperature for 24 

hours under anhydrous conditions, the color of the solution turns dark red and the only 
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Scheme 4 
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Pd 
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(b) 

Me3Si^ 
NH SiMe3 

(IX) (Vnia-b) 

products are the iodide-substituted analogs (both isomers) of VHa-b, Pd(PEt3)(I)[|x-r|':Ti--

C(SiMe3)(PEt3)=P=N(SiMe3)]Pd(PEt3)I (Vnia-b). Presumably, MeCI gas is liberated 

during this halide exchange reaction. A similar reaction using three equivalents of Nal resulted 

in the formation of VUla-b in only 5 minutes, but the product was contaminated with 

Cl(Et3p)Pd[q~-C(SiMe3)(PEt3)=P(=0)NH(SiMe3)] (IX) which forms when Vlla-b is 

exposed to traces of water, even though the Nal was heated under vacuum for several hours to 

remove water. When the isomeric mixture of Vnia-b is crystallized from Et^O, isomer Vnib 

crystallizes preferentially, although some of VOa is also present in the crystals. Compounds 

VlUa-b were characterized by ^'P NMR spectroscopy and the structure of compound Vlllb 

was partially determined by X-ray diffraction studies. Although the refinement of the structure 

of Vlllb is not suitable for publication (final R factor 9 %), the connectivity of the molecule 

was unambiguously determined. The ^'P NMR spectrum of VlUa-b is consistent with the 

structure obtained for VHIb, and assignments were made as in the very similar compounds 

Vlla-b (see results of Vlla-b). 

When a pure sample of Vlla-b is reacted (Scheme 4) with two equivalents of 

degassed, deionized H,0 in THF at room temperature, the color darkens immediately and the 

^'P NMR spectrum shows the formation of the phosphonio-methylene(oxo)phosphorane 

compound EX along with two singlets that are most likely due to palladium phosphine 

complexes. Although these by-products were not identified, they were easily separated from 
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IX. Compound IX was characterized by ^'P NMR spectroscopy, FAB mass spectroscopy 

and the structure was determined by X-ray diffraction. The peak corresponding to P(x) at 5 

80.0 in the ^'P NMR spectrum of EX is readily assigned by the proton-coupled ''P NMR 

spectrum, in which the P(x) signal remains sharp, while the PEtj signals at 5 37.1 and 24.2 are 

broadened dramatically by coupling to the ethyl protons. In IX, the chemical shift of P(x) at 5 

80.0 is upfield from the two known methylene(oxo)phosphoranes, Mes*P(=0)=CR(SiMe3) 

(R = Ph, 8 153.7; R = SiMe3, 5 161.1 ),34 which are somewhat related to the ligand in IX, but 

without a phosphonio substituent on the C=P carbon. This upfield shift is consistent with the 

upfield shifts found in tj'-coordinated phosphaalkene compounds. As in compounds Vlla-

b and VUla-b, the coupling constants between the PEtj groups and the P(x) atom in IX are 

quite small ('-/pMPQ,, = 11.0 Hz, = 0 Hz), much smaller than the large coupling constant 

found in Ula = 91.4 Hz). This is most likely due to the pentavalent nature of the P(x) 

atom in Vlla-b, Vllla-b and IX, which allows for less phosphorus s-character in the 

bonding and results in smaller coupling constants. 

Discussion 

CI(Ph3P)Pd[ii'-C(Cl)(PPh3)=PN(SiMe3)J (Ilia), [(Ph3P)2Pd(n'-

C(CI)(PPh3)=PN(SiMe3),)] (PF,) (IV) and [(Ph3P)(MeCN)Pd(Ti'-

C(CI)(PPh3)=PN(SiMe3)2)] (PF^) (V). In contrast to the reaction (eq 2) of Pd(PPh3)4 

with Cl2C=PMes* (Mes* = 2,4,6-tri-/^rr-butylphenyl)^^ which results in the migration of the 

Mes* group to carbon to form Mes*-C=P and Pd(PPh3)2Cl2 with no observed intermediates, 

the reaction of Pd(PPh3)4 with Cl2C=PN(SiMe3)2 results in the formation of the ri'-coordinated 

phosphavinyl phosphonium compound Cl(Ph3P)Pd[n'-C(Cl)(PPh3)=PN(SiMe3)2] (Illa) via 

intermediates (Ph3P)2Pd[ri--C(Cl)2=PN(SiMe3),] (la) and trans-

Cl(Ph3P)2Pd[C(CI)=PN(SiMe3)2] (Ila). This is analogous to the reported reaction of an ri'-

vinyl complex of palladium which rearranged upon heating to an n'-vinyl phosphonium 



www.manaraa.com

91 

complex.35 We previously obtained a niclcei analog (3) of Ilia in a reaction (eq 3) of 

Ni(PPh3)4 with Cl2C=PN(SiMe3),, but in that case the product was unstable and reacted further 

with another equivalent of NiCPPhj)^ to generate the dinuclear phosphavinylidene phosphorane 

complex (4). However, compound Ilia is air stable and does not react with Pd(PPh3)4. 

The isomerization reaction of Ha to Ilia can be rationalized by proposing (Scheme 5) the 

rearrangement of the TI'-phosphavinyl (Ila) to an n"-phosphavinyl (Ha' and Ha") 

intermediate which is attacked by PPh3 to form the phosphavinyl phosphonium complex IHa. 

Scheme 5 
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The carbene-phosphido resonance structure (Ha") is probably more favored than the alkyl-

phosphine resonance form (Ila') because the high energy C=P double bond^S is avoided; the 

electrophilic nature of the carbene-like carbon atom provides the driving force for nucleophilic 

attack by the PPhj group to form EQa. This carbene-like resonance structure in the ri"-

phosphavinyl ligand (Ila") is precedented by the X-ray structure of a similar n--phosphavinyl 

complex of tungsten Cp(CO)2W[Ti--C(Ph)=PPh{W(CO)5}] which contained a W-C bond 

length (1.954(8) A) that is typical of a W=C double bond.37 a similar mechanism for this 

phosphine migration was proposed previously for the formation of the nickel analog (3, eq 3) 

of Ilia. 17 

When Cl2C=PN(SiMe3)2 is reacted with Pd(dba)(PPh3)2, the formation of Ula occurs 

quantitatively under the same conditions in the same amount of time. In this case there is no 

excess PPh3 present in the reaction, which suggests that the PPh, that attacks the C=P carbon 

atom in Ha" must have dissociated from palladium. Since dissociative mechanisms in square 
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planar group 10 complexes are very rare, the most likely mechanism is an associative 

mechanism where the C=P phosphorus lone pair attacks above the square plane in Ila with 

loss of a PPhj ligand to generate Ila' and Ha". When Pd(dba)(dppe) is used as the Pd(0) 

reagent, the reaction (eq 5) stops at the phosphavinyl compound cis-

Cl(dppe)Pd[C(Cl)=PN(SiMe3)2] (VI). Here, dissociation of one P-donor of the chelating 

phosphine ligand is more difficult and an analog of Ilia does not form. Compound VI does 

not react with PPhj and KPFg to generate an analog of IV containing a dppe ligand in place of 

the two PPhj ligands on palladium, presumably because the chelating phosphine and chloride 

ligands in VI are not displaced easily enough to form an n'-phosphavinyl intermediate. 

The chloride ligand in compound EQa is easily substituted (Scheme 2) by neutral 

ligands upon addition of KPF^; stirring in MeCN results in formation of the cationic 

phosphavinyl phosphonium complex [(Ph3P)(MeCN)Pd(n"-C(Cl)(PPh3)=PN(SiMe3)2)] (PFJ 

(V), while addition of PPh, leads to [(Ph3P)2Pd(n'-C(Cl)(PPh3)=PN(SiMe3),)] (PFJ (FV). 

One of the palladium-coordinated PPh3 ligands in FV is replaced by stirring in MeCN to 

generate V; the MeCN ligand in V is displaced by CD3CN by stirring in CD3CN, or by PPh3 

to generate IV, or by CI" to generate Ilia. Thus, each of the compounds Ilia, FV and V 

contain a labile ligand on palladium, which is evident in the electrospray mass spectra which 

show the same highest molecular ion peak at m/e 870 conresponding to the fragment 

(Ph3P)Pd(ri"-C(Cl)(PPh3)=PN(SiMe3);)]'^, generated by the loss of CI", PPh3 and MeCN from 

Ilia, IV and V, respectively. 

X-ray Crystal Structure of [(Ph3P)(MeCN)Pd(Ti^-

C(Cl)(PPh3)=PN(SiMe3)2)] (PFg) (V). A thermal ellipsoid drawing of V (Figure 1) 

shows that the palladium atom is in a planar environment as defined by the coordinating atoms 

of the PPh3, MeCN, and [C(Cl)(PPh3)=PR] ligands; the sum of angles around the palladium 

atom is 359.9°. The [C(Cl)(PPh3)=PN(SiMe3)2] ligand is coordinated rj- to palladium through 

the C(l) and P(l) atoms, with the CI, PPh, and N(SiMe3) groups bent back from planarity in 
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the [C(Cl)(PPh3)=PN(SiMe3)J ligand; the sum of angles around C(l) involving P(l), P(3) 

and Cl( 1) of 347.4° indicates that C( 1) is roughly intermediate between sp" (360°) and sp^ 

(328.5°) hybridization, which is similar to structural features of ^^-coordinated olefins and 

phosphaalkenes (e.g., in Ni(PMe3),[ri"-(Me3Si)2CHP=C(SiMe3)2], the sum of angles around 

the C=P carbon is 343.5°).^ The structure of V is similar to that of the nickel n^-phosphavinyl 

phosphonium complex CI(Ph3P)Ni[ri--C(H)(PPh3)=PMes*] (5, eq 4). The C(l)-P(l) 

distance in V (1.802(4) A) is the same within error as that in the nickel complex 

Cl(Ph3P)Ni[Ti"-C(H)(PPh3)=PMes*] (5) (1.796(5) A);^^ both of these distances are much 

longer than the corresponding C=P distance in the free phosphavinyl phosphonium salt 

[(PPh3)(H)C=PN(j-Pr)2)](BFj (1.684( 14) A),26 which is consistent with ri"-coordination of 

the phosphavinyl phosphonium ligand and is similar to the lengthening of C=P bonds which 

occurs upon TI*-coordination of phosphaalkenes. The C(l)-P(2) distance in V (1.771(4) A) 

is slightly longer than the C-PPhj distance in Cl(PPh3)Ni[Ti--C(H)(PPh3)=PMes*] (5) 

(1.742(5) A); both of these distances are much longer than typical ylide C-P bond lengths, 

e.g., 1.661(8) A in Ph3P=CH2,3^ but are shorter than the phosphonium-type C-PPh3 distance 

in [(PPh3)(H)C=PN(/-Pr)2)](BF4) (1.798( 14) A), indicating that there is more phosphonium 

(C-P) than ylidic (C -P") character in the C-PPh3 bond in V. The Pd-P( I) distance in V 

(2.2688(11) A) is significantly shorter than the Pd-P(3) distance (2.3449( 11)). The bonding in 

V may be described as a mixture of two resonance structures (Scheme 6), analogous to those 

Scheme 6 

MeCN. 

N(SiMe3)- N(SiMe3); 
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proposed for the bonding in Cl(Ph3P)Ni[Ti"-C(H)(PPh3)=PMes*] (5). Resonance form a is 

an ylide-phosphido stmcture with a dative two electron donation from C( 1) and a phosphido-

type covalent bond between P(l) and palladium, where the [C(Cl)(PPh3)=PN(SiMe3)2] group 

donates three electrons to the thirteen electron cationic metal fragment (Ph3P)(MeCN)Pd'^-

Resonance form b is an n'-phosphavinyl phosphonium cation (1+) which donates two 

electrons to a formally Pd(0) metal fragment. The somewhat long C( 1)-P(2) distance argues 

for a contribution from form b, where the PPh, group on carbon has more phosphonium ±an 

ylide character, while the short Pd-P( 1) distance argues for a contribution from form a with 

some Pd-P phosphido-character. 

Pd(PEt3)(CI)[^-Ti';Ti'-C(SiMe3)(PEt3)=P=N(SiMe3)]Pd(PEt3)Cl (Vlla-b) 

and Pd(PEt3)(I)[n-ii':Ti'-C(SiMe3)(PEt3)=P=N(SiMe3)]Pd(PEt3)I (Vllla-b). The 

reaction of PdCPEt,), with one equivalent of Cl2C=PN(SiMe3)2 (Scheme 3) in hexanes or 

CH2CI2 resulted in the formation of rranJ-CI(Et3P)2Pd[C(CI)=PN(SiMe3)2] (lib) through the 

intermediate (Et3P)2Pd[ri--C(Cl)2=PN(SiMe3)2] (lb), as occurred in the reaction (Scheme 1) 

involving Pd(PPh3)4. However, lib did not undergo PEt3 migration from Pd to the C=P 

carbon, as in the PPh3 case, to form a PEt, analog of Ilia, even after stirring overnight 

followed by refluxing in hexanes for 4 h. A possible explanation is that the weaker 

coordinating ability of PPh, as compared with PEt3 allows the dissociation of PPh3 which 

results in the formation of Ilia; on the other hand, the PEt3 ligands in lib are so strongly 

bound that formation of the ri'-phosphavinyl intermediate analogous to Ha', Ha" (Scheme 5) 

is unfavorable. 

When the reaction of Pd(PEt3)3 is carried out with only one-half equivalent of 

Cl2C=PN(SiMe3)2 (Scheme 3) and warmed to room temperature, the reaction takes a different 

route forming the dimeric complex Pd(PEt3)(CI)[n.-ri':r|"-

C(SiMe3)(PEt3)=P=N(SiMe3)]Pd(PEt3)Cl (Vlla-b), in which a PEt3 group and an SiMe3 

group have migrated to the C=P carbon atom. This reaction again goes through intermediate 
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lb, and a small amount of lib forms as a by-product. As mentioned in the Results, compound 

nb is apparently not an intermediate in the formation of Vlla-b. Evidently, when two 

equivalents of Pd(PEt^)3 are used in this reaction, lb reacts with Pd(PEt3)3 to form Vlla-b 

before undergoing oxidative addition to form lib. When the reaction of PdCPEt,), with one-

half equivalent of Cl,C=PN(SiMe3)2 carried out and kept at -30°C for one week as opposed 

to warming to room temperature above, the oxidative addition reaction prevails and compound 

nb forms along with unreacted Pd(PEt3)3, with no formation of Vlla-b. Although lb was 

the only observable intermediate in ^'P NMR spectta recorded during the formation of Vlla-b, 

a plausible intermediate to explain its formation (Scheme 7) is the dinuclear phosphavinylidene 

phosphorane complex Pd2Cl2(PEt3)3[|X2-Ti":n'-C(PEt3)=PN(SiMe3)2] (VII). Intermediate VII 

Scheme 7 
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is analogous to the nickel complex Ni3Cl2(PPh3)2[|X2-n":Ti"-C(PPh3)=PN(SiMe3)2] (4, eq 3) that 

was previously characterized by X-ray diffraction studies. This intermediate must isomerize 

quickly to VHa-b by undergoing a 1,3 SiMe, migration from nitrogen to carbon, a process 

that is well documented in the chemistry of phosphaalkenes^^ and amino methylene 

phosphoranes,'^® and has also been proposed to occur (eq 6) in the formation of an 

imino(phosphoranylidenemethylene)phosphine (7) from a phosphavinylidene phosphorane 

intermediate (6).33 The proposed intermediate (6) is the same as the ligand in Vn, but with a 
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(Me2N)3P"^CH2PCl2 + 3 NaNCSiMej)^ 
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(6) (7) SiMe3 

P(Me2N)3 group on carbon instead of PPh3; and compound 7, which was characterized by an 

X-ray diffraction study, is analogous to the ligand in Vlla-b, thus supporting Vn as a 

reasonable intermediate that undergoes 1,3 SiMCj migration to form Vlla-b. 

The isomeric mixture Vlla-b reacts (Scheme 4) with Mel or Nal to form the iodide-

substituted isomeric mixture VHIa-b. The structure of VlUb was determined by X-ray 

diffraction studies, but the final refinement was unacceptable for publication. However, the 

connectivity was unambiguously determined and the bond lengths and angles were reasonable 

with respect to related structures. Because of the similarity of their ^'P NMR spectra, 

compounds Vlla-b and Vllla-b are very likely isostructural. The 

(Et3P)(Me3Si)C=P=NSiMe3 ligand in Vlla-b and Vllla-b is best described as an r\'-

coordinated phosphonio-methylene(imino)metallophosphorane ligand (c), which is a 

zwitterionic structure with the positive charge on the phosphonium PEtj group and the minus 

charge on Pd(2). Both palladium atoms are then formally (+1) with Pd(2) bonded covalendy 

to the C=P phosphorus, and Pd( I) bonded r|- to the C=P double bond. If the phosphonium 

© 
Et3P ^SiMe3 

PEtj 

(c) 
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(PEt,)* and [(X)(PEt3)Pd(2)]" groups are mentally replaced with R-groups, this complex is then 

analogous to an TI'-coordinated methyIene(imino)phosphorane. Compounds Vlla-b and 

Vraa-b are the first to contain a phosphonio-methylene(imino)metallophosphorane ligand; 

they are also the first examples of complexes with an n" methylene(imino)phosphorane ligand, 

in general. An analog, [(Me2N)3P](Me3Si)C=P=N(SiMe3) (7, eq 6), of the free ligand 

(Ph3P)(Me3Si)C=P=N(SiMe3) in Vlla-b and Vllla-b, except possessing a P(NMe2)3 group 

on the C=P carbon instead of PPhj is known,^^ but no attempts to coordinate it to a transition 

metal complex were reported . In light of the fact that the (Ph3P)(Me3Si)C=P=N(SiMe3) group 

has been coordinated for the first time in Vlla-b and Vnia-b, it seems reasonable that the 

coordination chemistry of these types of ligands could be explored further, as the P=N bond 

and the lone pair electrons on nitrogen are also available for bonding. It is also reasonable to 

assume that the well known class of methylene(imino)phosphoranes (R2C=P(=NR)R)13 

should show interesting coordination properties, especially with respect to coordination of the 

C=P double bond as in Vlla-b and Vllla-b. 

CI(Et3P)Pd[Ti'-C(SiMe3)(PEt3)=P(=0)NH(SiMe3)] (IX). The isomeric 

mixture of dimeric Vlla-b undergoes hydrolysis with even traces of water (Scheme 4) to form 

one isomer of the mononuclear compound Cl(Et3P)Pd[ri"-C(SiMe3)(PEt3)=P(=0)NH(SiMe3)] 

(IX). This is analogous to the known hydrolysis reaction (eq 7) of 

methylene(imino)phosphoranes (RiC=P(=NR)R).13 the formation of IX, the oxygen from 

N—Ph O 
H2O II^NH-Ph 

Mes—P^ ^ Mes—P^ (7) 

CPh2 CHPho 

the water adds to the phosphorus and a hydrogen adds to the nitrogen. The second hydrogen 

from the water presumably leaves with the Pd(PEt3)Cl fragment, but the complex that forms 

was not isolated. 
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X-Ray Crystal Structure of CI(Et3P)Pd[ri^-C(SiMe3)(PEt3)=P(=0) 

NHCSiMej)] (IX). The structure of IX exhibits an n'-coordinated phosphonio-

methylene(oxo)phosphorane (Et3P)(Me3Si)C=P(=0)NH(SiMe3) ligand. The ORTEP drawing 

of IX (Figure 2) shows that the palladium atom is in a planar environment defined by the 

donor atoms of the PEtj, CI, and (Et3P)(Me3Si)C=P(=0)NH(SiMe3) ligands; the sum of 

angles around the palladium atom is 360.2°. In contrast to the one structurally characterized 

methylene(oxo)phosphorane compound [(SiMe3)(Ph)C=P(=0)Mes*]'^^ which has a trigonal 

planar geometry at phosphorus, the n'-coordinated ligand in EX contains a pyramidalized C=P 

phosphorus atom (sum of angles around P(l) involving 0(1), C(l) and N(l) is 342.3°). 

However, the sum of angles around C(l) involving P(l), P(2) and Si(2) is 357.3°, which 

suggests that C(l) is close to sp" hybridization. This contrasts with ri'-phosphaalkenes in 

which both the carbon and phosphorus are pyramidalized to roughly between sp" and sp^ 

hybridization. The C(l)-P(l) distance in IX (1.787(6) A) is much longer than the C=P 

distance in [(Me3Si)(Ph)C=P(=0)Mes*] (1.657(4) A), which is indicative of ti'-coordination 

of the phosphonio-methylene(oxo)phosphorane ligand and is consistent with the lengthening of 

C=P bonds which occurs upon n'-coordination of phosphaalkenes. The P=0 distance in 

IX (1.489(4) A) is similar to that in [(Me3Si)(Ph)C=P(=0)Mes*] (1.458(3) A). The C(l)-

P(2) distance in IX (1.744(5) A) is similar to the C-PPhj distance in Cl(PPh3)Ni[ri"-

C(H)(PPh3)=PMes*] (1.742(5) A); both of ±ese distances are much longer than typical 

ylide C-P bond lengths, e.g., 1.661(8) A in Ph3P=CH2,^^ but are shorter than the 

phosphonium C-PPhj distance in [(PPh3)(H)C=PN(f-Pr),)](BFJ (1.798(14) A),26 suggesting 

that the C( 1 )-P(2) bond in IX has more phosphonium (C-P") than ylidic (C'-P^) character. The 

Pd-P(l) distance in IX (2.1696(13) A) is significantly shorter than the Pd-P(3) distance 

(2.270(2) A). 

The bonding in IX may be described as a mixture of two resonance stmctures as 

shown in Scheme 8. Resonance form d is an ylide-phosphido structure with a dative two-
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Scheme 8 
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electron donation from C( I) and a phosphido-type covalent bond between P( 1) and palladium, 

where the (Et3P)(Me3Si)C=P(=0)NH(SiMe5) group acts as a three electron donor to the 

thirteen electron PdCPEtjjCI fragment. Resonance form e is a zwitterionic structure, where the 

minus charge is located on palladium, with the TI"-phosphonio-methylene(oxo)phosphorane 

cation (1+) donating two elecu^ons to a formally Pd(0) metal fragment. The somewhat long 

C( 1)-P(2) distance argues for a contribution from form e, where the PPhj group on carbon has 

more phosphonium than ylide character, while the short Pd-P(l) distance argues for a 

contribution from form d with some Pd-P phosphido-character. Although only two stable 

methylene(oxo)phosphoranes are known,^'^'^^ quite a few have been postulated as 

intermediates and characterized by trapping experiments. Coordination of the phosphonio-

methylene(oxo)phosphorane ligand in IX suggests that these compounds should have the 

ability to coordinate through the C=P bond in other transition metal complexes, and may be a 

way of stabilizing these reactive compounds for further study. 

Conclusion 

In contrast to the reactions of Pt(PR3)_, or Pd(PR3)4 with Cl2C=PMes* which result in 

the rearrangement of the aromatic Mes* group from phosphorus to carbon to generate Mes*-

CsP via phosphavinyl intermediates, 15J6 the reactions of Pd(0) reagents with 
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Cl3C=PN(SiMe3)3 resulted in the formation of complexes containing new carbon-phosphorus 

multiply-bonded ligands. The reaction (Scheme I) of PdCPPh,)^ with CKCsPNCSiMe,), 

formed the phosphavinyl phosphonium complex Cl(Ph3P)Pd[Ti"-C(Cl)(PPh3)=PN(SiMe3),] 

(nia) via the n'-phosphaalkene (Ph3P)2Pd[Ti--C(Cl)3=PN(SiMe3)2] (la) and the ri'-

phosphavinyl trans Cl(Ph3P)2Pd[C(Cl)=PN(SiMe3),] (Ila). The labile chloride ligand on 

palladium in Ilia was substituted (Scheme 2) by PPh, or MeCN in the presence of KPF^ to 

generate [(Ph3P),Pd(Ti--C(Cl)(PPh3)=PN(SiMe3)3)] (PF^) (IV) or [(Ph3P)(MeCN)Pd(Ti--

C(Cl)(PPh3)=PN(SiMe3),)] (PF^) (V), respectively. The structure of V was determined by X-

ray diffraction studies which confirmed the r|'-coordination of the C(Cl)(PPh3)=PN(SiMe3), 

ligand. When Pd(PEt3)3, instead of Pd(PPh3)^ was reacted (Scheme 3) with 

CUC=PN(SiMe3)2, the phosphavinyl complex rrfln5-Cl(Et3P)2Pd[C(Cl)=PN(SiMe3)2] (lib) 

formed but did not rearrange to form a phosphavinyl phosphonium complex analogous to lUa. 

However, when two equivalents of Pd(PEt3)3 were reacted (Scheme 3) with 

CUC=PN(SiMe3)2, the novel, dimeric phosphonio-methylene(imino)metaliophosphorane 

complex Pd(PEt3)(Cl)[(i-n':Ti'-C(SiMe3)(PEt3)=P=N(SiMe3)]Pd(PEt3)Cl (Vlla-b) formed as 

a mixture of two isomers; its formation involved migration of a SiMe, group firom nitrogen to 

carbon and a PEt, group from palladium to the C=P carbon. The chloride ligands in Vlla-b 

were substituted by iodide using Mel or Nal to generate Pd(PEt3)(I)[^-Ti':Ti--

C(SiMe3)(PEt3)=P=N(SiMe3)]Pd(PEt3)I (Vllla-b); the structure of Vlllb was partially 

determined by X-ray diffraction studies. Compound VTIa-b also undergoes hydrolysis with 

traces of water to form the phosphonio-methylene(oxo)phosphorane complex Cl(Et3P)Pd[Ti--

C(SiMe3)(PEt3)=P(=0)NH(SiMe3)] (IX); the structure of which was determined by X-ray 

diffraction studies. The ligands in Vlla-b, Vllla-b and EX represent the first examples of 

coordinated methylene(imino, oxo)phosphorane ligands. 
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The results for Pd(0) obtained herein may be compared with those from reactions of 

Ni(0) and Pt(0) reagents with CUCsPNCSiMe,),, which in some cases gave much different 

results (Scheme 9).When M(PEtj)_, was reacted with CUC=PN(SiMe3)2, phosphavinyl 

Scheme 9 
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complexes were observed with M = Pd, Pt and Ni, and there was no evidence for PEt^ 

migration to carbon. However, when MCPPhj)^ was reacted with Cl2C=PN(SiMe3)2, only in 

the case of M = Pd was a phosphavinyl complex observed (Scheme 1), which underwent PPh, 

rearrangement upon warming to form a phosphavinyl phosphonium complex. In the case of M 

= Ni, a phosphavinyl intermediate was postulated, but only the phosphavinyl phosphonium 

complex (3, eq 3) was observed. Compound 3 was not isolated, but reacted with another 

equivalent of Ni(PPh3)4 to generate the novel dinuclear phosphavinylidene phosphorane 

complex (4, eq 3). In all of the reactions with Cl2C=PN(SiMe3)3, there is no R-group 

rearrangement from phosphorus to carbon as in the reactions with Cl;C=PMes*. ^^,16 

Evidently, the presence of PPh, ligands favors the formation of the phosphavinyl 

phosphonium complexes, while PEt-, tends to stabilize the phosphavinyl complexes. 
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Table 1. Crystal and Data Collection Parameters for [(Ph3P)(MeCN)Pd(Ti"-

C(Cl)(PPh3)=PN(SiMe3)2)] (PFJ (V) and Cl(Et3P)Pd[Ti--C(SiMe3)(PEt3)=P(=0)NH(SiMe3)] 

(IX). 

IX 
formula 

space group 

a, A 

b, A 

c, A 

a, deg 

13. deg 

ig /.dec 

e ^ 
K, A^ 

Z 

Jcalc 

crystal size, mm 

11, mm"' 

data collection instrument 

radiation (monochromated in 

incident beam) 

temp, K 

scan method 

data collection range, 

6, deg 

Cs.Hj^ClF.N^P.PdSi, 

C2/c 

45.7520(3) 

12.1002(2) 

25.1991(4) 

90 

123.146(1) 

90 

11680.4(3) 

8 

1.337 

0.45 X 0.36 X 0.09 

0.570 

Siemens SMART 

Mo Ka (^0.71073 A) 

C42H,ogCl2N203P6Pd2Si^ 

Fdd2 

24.7392(4) 

46.7039(6) 

11.2593(1) 

90 

90 

90 

13009.2(3) 

8 

1.298 

0.22x0.19x0.09 

0.889 

Siemens SMART 

Mo Ka (X=0.71073 A) 

173(2) 173(2) 

Area Detector, co-frames Area Detector, o>-frames 

1.06-25.03 1.74-25.03 
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Table 1, (Continued) 

V IX 
no. of data collected 28232 16542 

no. of unique data total 10125 5544 

with I> 2(J (I) 10122 5542 

no. of parameters refined 660 324 

trans factors; max; min 1.000/0.811 1.000/0.840 

/r (I>2o (I)) 0.0534 0.0417 

Rj (I>2ct (D) 
quality of fit incUcator' 
largest peak, e/A'^ 

0.1074 

1.073 
0.582 

0.0967 

1.087 
0.839 

'R = IIIFol-IF<,ll/ZIFol. = [ZwdFJ-IFcD'/XwIFol-]"^; vw = iMlFol). "^Quality -of-fit = 

[2:H;(IFJ-IFel)V(yVobs-^parameters)]"'-
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Table 2. Selected Bond Distances (A) and Angles (deg) for [(Ph3P)(MeCN)Pd(Ti'-

C(CI)(PPh3)=PN(SiMe3),)] (PF,) (V). 

Distances (A) 

Pd(l)-C(l) 

Pd(l)-P(l) 

Pd(l)-N(l) 

Pd(l)-P(3) 

2.162(4) 

2.2688(11) 

2.166(4) 

2.3449(11) 

C(l)-P(l) 

C(l)-P(2) 

P(l)-N(2) 

N(l)-C(2) 

1.802(4) 

1.771(4) 

1.704(3) 

1.131(6) 

C(1)-C1(1) 

N(2)-Si(l) 

N(2)-Si(2) 

1.792(4) 

1.785(4) 

1.788(4) 

Bond Angles (deg) 

P(I)-C(1)-P(2) 115.8(2) C(l)-Pd(I)-P(l) 47.93(11) 

P(I)-C(l)-Pd(l) 69.13(13) C(l)-Pd(l)-P(3) 153.91(11) 

P(2)-C(l)-Pd(l) 109.9(2) P(l)-Pd(l)-P(3) 106.49(4) 

P(1)-C(1)-C1(1) 122.4(2) C(l)-P(l)-Pd(l) 62.94(13) 

P(2)-C(1)-C1(1) 109.2(2) N(2)-P(l)-Pd(l) 114.87(14) 

C(l)-Pd(l)-N(l) 109.86(14) P(l)-N(2)-Si(l) 107.7(2) 

N(l)-Pd(l)-P(l) 157.79(10) P(l)-N(2)-Si(2) 129.3(2) 

N(l)-Pd(l)-P(3) 95.57(10) 

''Numbers in parentheses are estimated standard deviations in the least significant digits. 
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Table 3. Selected Bond Distances (A) and Angles (degj for Cl(EtiP)Pd[r|'-

C(SiMe3)(PEt3)=P(=0)NH(SiMe,)] (IX). 

Distances (A) 

C(1)-P(I) 1.787(6) Pd(l)-CI(l) 2.459(2) P(l)-0(1) 1.489(4) 

C(l)-P(2) 1.744(5) Pd(l)-P(3) 2.270(2) C(l)-Si(2) 1.871(5) 

Pd(l)-C(l) 2.228(5) P(l)-N(l) 1.657(4) N(l)-Si(l) 1.748(4) 

Pd(l)-P(l) 2.1696(13) 

Bond Angles (deg) 

P(l)-Pd(l)-C(l) 47.92(14) P(l)-C(l)-Si(2) 119.1(3) 

C(l)-Pd(l)-P(3) 155.79(14) P(2)-C(l)-Si(2) 120.7(3) 

C(l)-Pd(l)-Cl(l) 108.07(14) Pd(l)-C(l)-Si(2) 107.1(2) 

P(l)-Pd(l)-P(3) 108.33(7) 0(1)-P(l)-Pd(l) 124.3(2) 

P(l)-Pd(l)-Cl(l) 155.67(7) 0(I)-P(I)-N(1) 109.7(2) 

P(3)-Pd(l)-CI(l) 95.91(7) N(l)-P(l)-C(l) 114.0(3) 

P(2)-C(l)-P(l) 117.5(3) 0(1)-P(1)-C(1) 118.6(2) 

P(2)-C(l)-Pd(l) 111.7(3) P(l)-N(l)-Si(l) 128.2(3) 

P(l)-C(l)-Pd(l) 64.3(2) N(l)-P(I)-Pd(l) 116.6(2) 

"Numbers in parentheses are estimated standard deviations in the least significant digits. 
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Figure Captions 

Figure 1. Thermal ellipsoid drawing of [(Ph3P)(MeCN)Pd(Ti--C(Cl)(PPh3)=PN(SiMe3)j)] 

(PFJ (V). 

Figure 2. Thermal ellipsoid drawing of Cl(Et3P)Pd[Ti--

C(SiMe3)(PEt3)=P(=0)NH(SiMe3)] aX). 
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FUNCTIONALIZATION OF tiS n'-BRIDGING CYAPHIDE (C^P) 

LIGANDS: TRINUCLEAR ti*, iiS TI'-BRIDGING CYAPHIDE AND 

DINUCLEAR BRIDGING ISOCYAPHEDE (C^PR) COMPLEXES 

OF PLATINUM 

A paper to be submitted to Organometallics 

Wayde V. Konze, Victor G. Young, Jr.', and Robert J. Angelici* 

Abstract 

The oxidative addition reaction of PtCPEtj)^ with Cl2C=PN(SiMe3)2 at low temperature 

(-50°C) forms the ri'-phosphavinyl complex a5-Cl(Et3P)2Pt[C(Cl)=PN(SiMe3)2] (la) which 

isomerizes to the trans-isomtx (lb) upon warming to 0°C; the structure of lb was determined 

by X-ray diffraction studies. Complex lb reacts with Pt(PEt3)2Cl2 in the presence of three 

equivalents of sodium-benzophenone to generate the ri', ri'-cyaphide-bridged dimer 

Cl(Et3P)2Pt(n.-ri', ri'-C=P)Pt(PEt3)2 (II) in good yield, providing a much simpler and higher 

yield preparation of II which was synthesized and characterized previously by a more 

circuitous route. Compound II reacts with one-half equivalent of [Cl2pt(PEt3)]2 or with one 

equivalent of W(CO)5(THF) to generate the trinuclear metal-cyaphide complexes Cl(Et3P)2Pt[|i-

n', n'. ii'-CsP{Pt(PEt3)(Ci)2}]Pt(PEt3)2 (III) and CI(Et3P)2Pt[^-Ti', n', n'-

C=P{W(CO)5}]Pt(PEt3)2 (IV), respectively, in which the lone pair of electrons on the CHP 

phosphorus atom is coordinated to a Pt(PEt3)(Cl)2 fragment in the former and a W(CO)5 

fragment in the latter; the structure of FV was determined by X-ray diffraction studies. 

Compound n also reacts with Mel to form the methyl isocyaphide complex (Cl)(Et3P)Pt(n-

C=PMe)Pt(PEt3)2(I) (Vc) in which the cyaphide (C^F) ligand has been converted to a methyl 

isocyaphide (CsPMe) ligand in a semi-bridging coordination mode. When compound II is 

reacted with MeOTf. the product is the cationic isocyaphide complex [(Cl)(Et3P)-,Pt((j.-ri', ri"-
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C=PMe)Pt(PEt3)2](OTf) (Va), which is likely coordinated in an n', n"-bridging mode. 

Compound Va reacts with Nal to form Vc, which suggests that Va forms as an intermediate 

before Vc in the reaction of II with Mel. 

t X-Ray Crystallographic Laboratory, Chemistry Department, University of Minnesota, 

Mirmeapolis, MN 55455 

Introduction 

Studies involving phosphorus analogs of common organic ligands have evolved at a 

very rapid pace recently, and coordination compounds of C-P analogs of almost all C-C 

multiple bond ligands are now known, including phosphaalkenes, phosphaalkynes, 

phosphaallyls, phosphaallenes, phosphabutadienes, phosphacyclopropenes, 

phosphacyclobutadienes, phosphacyclopentadienyls and phosphaarenes.^"^ However, 

phosphorus analogs of the well studied cyanide (CsN ) and isocyanide (C=NR) ligands have 

been limited.^"^ These phosphorus compounds have been calculated to be high energy 

species; the heat of formation in CsP (cyaphide anion) is calculated to be ca. 40 kcal/mol less 

exothermic than that of CsN",^^ and C=PH (isocyaphide) is calculated to be 85 kcal/mol less 

stable than its isomer H-C=P (phosphaalkyne). ̂  ^ Nevertheless, we recently succeeded in 

preparing the first example of a coordinated isocyaphide ligand by oxidative addition of the C-

C1 bond in the phosphavinyl complex (1) (eq 1) to generate a diplatinum complex 

[(Cl)(Et3P)Pt(n-C=PR)Pt(PEt3),(Cl)] (2), 
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Pt(PEt3)4 + Cl2C=PR 
(R = Mes*, 2,4,6-tri-rerr-butylbenzene) 

i 
' PEtg PEt, 

EtjP /C=P^ if 
CI R p 

R (1) (2) 

in which the isocyaphide ligand exhibits a semi-bridging coordination mode.^ However, this 

preparation was limited by the few examples of dichlorophosphaalkenes available and by the 

bulky R-groups that are incorporated in these reagents. More recently, Weber and coworkers 

reported the synthesis (eq 2) of some diiron complexes containing symmetrically-bridged 

isocyaphide ligands (3) by a different route.^ In these reactions, the isocyaphide products 

^Me —1+ 
I II 

OC,.. .xo RP(H)(SiMeO OC.. ...CO MejSiSMe 
Fe^—Fe;^ 'on ' Fe^-—Fe + and (2) 

rrf^ V rr< V DBU-H^ Cp II Cp Cp I I  Cp 
o o 

(3) 

were only prepared with bulky R-groups on phosphorus. We also obtained the first example 

of a cyaphide complex (Et3P),ClPt(CsP) (4) from a reaction (eq 3) of the phosphavinyl 

9^ PEt3 

(1) Et3P-Rt—PEt3 c i—A—C^ (3) 

C > ^ 
in PEt3 
p / PEt3 
P Et3P ^ 

(4) 01) 

complex (1) with PdCPEtj)^, in which the Mes* group was transferred from phosphorus to 

palladium forming (Et3P)2(Cl)Pd(Mes*) as a side product.^ Compound 4 could only be 

characterized by NMR, but reacted (eq 3) with Pt(PEt3)4 to generate the ri', ri"-cyaphide dimer 

Cl(Et3P)2Pt(|a-ri', n'-CsP)Pt(PEt,), (II), which was characterized by X-ray diffraction studies. 
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We describe in the present paper a high yield preparation of complex II utilizing a one-

step reaction from the phosphavinyi complex rra/i5-Cl(Et3P)3Pt[C(Cl)=PN(SiMe3)2] (lb), 

which has much different reactivity than the analogous phosphavinyi complex trans-

Cl(Et3P)2Pt[C(Cl)=PMes*] (l)J^ We also investigate further functionalization of the 

cyaphide ligand in complex U by virtue of die accessible lone pair of electrons on the OP 

phosphorus atom. During the course of these studies, we have isolated the first examples of 

trinuclear metal-cyaphide compounds (A) that were formed by 

ML„ 

R 
?  ^ ^ P  

CI—Pt— 
/ ^ 

E t j P  ^  

(A) 

coordinating the CsP phosphorus atom in II to other transition metal fragments. We have also 

found that the cyaphide ligand in II can be easily converted to an alkyl isocyaphide ligand by 

using various alkylating agents, constituting the furst examples of cyaphide-isocyaphide 

conversions and demonstrating that isocyaphide ligands with less bulky alkyl R-groups can be 

stabilized on transition metals. 

Results and Discussion 

Synthesis of ^ra#z^-Ci(Et3P),Pt[C(CI)=PN(SiMe3)2] (lb). The reaction (eq 4) 

of Pt(PEt3)^ with Cl2C=PN(SiMe3), in THF or hexanes at -50°C immediately and quantitatively 

forms the tj'-phosphavinyi complex ci5-Cl(Et3P),Pt[C(Cl)=PN(SiMe3)2] (la) by oxidative 
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Pt(PEt3)4 + Cl2C=PR 
(R = N(SiMe3)2) 

-50T 

Et3P\ 
(b) Pt 

o°c 

EtgP C=p 
(a) c/ R 

(la) (lb) 

addition of one of the C-Cl bonds; upon warming the solution to 0°C, the c/j-isomer 

completely rearranges to the trans-isomer (lb). Some formation of E^(PEt3)2Cl2 also occurs 

during this reaction. This cis-trans isomerization is quite similar to that in the analogous 

phosphavinyl complex Cl(Et3P)2Pt[C(Cl)=PMes*] in which both the cis- and rron^-isomers 

to those of rra/u-Cl(Et3P)2Pt[C(Cl)=PMes*] (1), but they differ in reactivity. For instance, 

compound 1 rearranges to Mes*OP and Pt(PEt3)2Cl2 after 24 h in THF at room temperature, 

whereas lb is stable in THF for weeks at room temperature, although a small amount of 

F^(PEt3)2Cl2 does form in this time. Further, compound 1 undergoes a second C-Cl oxidative 

addition reaction (eq I) with Pt(PEt3)4 in 24 h at room temperature to form the isocyaphide 

complex [(Cl)(Et3P)Pt(^-C=PMes*)Pt(PEt3)2(Cl)] (2); a similar reaction between lb and 

Pt(PEt3)j does not form the N(SiMe3)2 analog of compound 2, but results in decomposition to 

a complex mixture of unidentified products. 

Compounds la and lb were characterized by their ^'P and ^'P{ 'H} NMR spectra. The 

signals corresponding to P(x) in the ''P NMR spectra of la and lb were assigned by their 

characteristic downfield chemical shifts of 225.1 and 222.3 ppm, respectively, and by their 

proton-coupled ^'P NMR spectra in which these signals do not show any proton coupling, 

while the signals corresponding to the PEt, groups are greatly broadened. The P(x) peak in la 

is split into a doublet of doublets = 8.3 Hz, = 33.0 Hz) by the two inequivalent 

PEt, groups and exhibits platinum satellites with Vpi^,p, = 410 Hz. The P(x) peak in lb is split 

were isolated and characterized. ̂ 2 fhe structure and ^'P NMR spectrum of lb are very similar 
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into a triplet = 20.0 Hz) by the two equivalent PEt, groups and exhibits a larger "^Pt-P 

coupling constant ('^p,^)p, = 676 Hz) than in la. In la, the PEtj ligand that is trans to the 

C(Cl)=PN(SiMe3), group is assigned to P(b) at 5 10.1 ppm and the cis PEt3 ligand is assigned 

to P(a) at 5 5.6 ppm based on the larger coupling constant = 33.0 Hz between P(x) in 

the C(CI)=PN(SiMe3)2 group and the trans PEt, group P(b). These ^'P NMR data are 

analogous to those ^2 obtained for c/j-Cl(Et3P),Pt[C(Cl)=PMes*] (5(P(x)): 224.0 (dd, 

= 12.3 Hz, Vp(,,p(b) = 46.3 Hz, Vp,^)pj = 365.4 Hz) and fra/z5-Cl(Et3P)2Pt[C(Cl)=PMes*] (1) 

(5(P(x)): 223.3 (t, Vp,„p,„ = 25.2 Hz, Vp(^,p, = 657.7 Hz) which indicates that the compounds 

are isostructural and that the N(SiMe3)2 group does not impart dramatic differences in the 

bonding compared with the Mes* group. However, in order to more thoroughly compare the 

bonding properties in these complexes, the structure of lb was determined by X-ray diffraction 

studies and compared with the previously determined structure of compound 1. ̂ 2 

X-ray Crystal Structure of rrflns-CI(Et3P)2Pt[C(Cl)=PN(SiMe3)2] (lb). A 

thermal ellipsoid drawing of lb (Figure 1) shows that the complex is isostructural with the 

previously characterized compound rran5-CI(Et3P)2Pt[C(Cl)=PMes*] (1). The platinum atom 

is in a square-planar environment as defined by the two PEtj, CI, and [C(C1)=PR] ligands; the 

sum of angles around the platinum atom is 360.0°. The C(I)-P(1) distance of 1.690(7) A is 

marginally longer than that (1.678(5) A) in compound 1 and is the same within error as the 

C=P distance (1.685(2) A) in the free phosphaalkene Cl2C=PN(SiMe3)2.^3 The Pt-C(l) 

distance in lb (1.990(7) A) is slightly shorter than the corresponding distance (2.013 (4) A) in 

1.^2 xhe nitrogen atom in lb is in a trigonal planar environment, and the P(l)-N(l)-Si(l)-

Si(2) plane is almost orthogonal (96.4°) to the plane defined by Pt, Cl(l), C(l), P(l) and N(l). 

This orthogonality rules out any conjugative effects from the nitrogen lone pair; in a series of 

X-ray determined structures of phosphaalkenes containing NR^ groups on phosphorus, 

orthogonal NR, groups were found to show no conjugative effects with the C=P double 

bond.If the [C(C1)=PR] ligands in 1 and lb were significantly different, the bond lengths 
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between platinum and the trans ligands (Cl(2)) would be affected by this difference. However, 

the Pt-Cl(2) length in lb (2.373(2) A) is the same within error as that (2.377(2) A) in 1. Thus, 

a comparison of the structures of 1 and lb indicate that the N(SiMe3)2 and Mes* groups show 

similar structural effects in phosphavinyl complexes of the type rranj-CI(Et3P)2Pt[C(Cl)=PR]. 

Preparation of Cl(Et3P)2Pt((x-Ti', Ti^-CHP)Pt(PEtj)2 (II). The reaction (eq 5) of 

1.05 equivalents of rmn.y-Cl(Et3P)2Pt[C(Cl)=PN(SiMe3)2] (lb) and 1 equivalent of 

CK ,PEt, Pt(PEt3)2Cl2 pEt, ^ 
>t 3 Na(PhoC=0) / 

c. i/ \ ^ CI—Pt— 
Et3p C=?^ THF yd) \ 

cr R ppf Pt^) 
3 / ^PEl 

^ ^ EtjP (c) 

(lb) (ID 

Pt(PEt3)2Cl2 with 3 equivalents of a dropwise added 0.2 M solution of sodium benzophenone 

ketyl in THF forms the bridging cyaphide dimer Cl(Et3p)2Pt(ti-n', ri"-C=P)Pt(PEt3)2 (II) in 

good yield. This preparation is much simpler than the original (eq 3) which involved the 

reaction of fra/ij-Cl(Et3P)2Pt[C(Cl)=PMes*] (1) with Pd(PEt3)^ to first generate a mixture of 

(Et3P)2ClPt(CsP) (4) and (Et3P)2(Cl)Pd(Mes*); complex 4 was then purified by crystallizing 

out (Et3P)2(CI)Pd(Mes*) and finally reacted further with Pt(PEt3)4 to generate the product n.^ 

In this new preparation, the intermediate isolation of complex 4 is avoided, and highly reactive 

Pd(0) and Pt(0) reagents are not necessary. Further, this reaction can be done on a several 

gram scale and gives excellent yields of complex 11 in pure, crystalline form. 

In order to gain an understanding of how this interesting reaction proceeds, several 

different stoichiometries of different reagents were investigated, as was the order of addition. 

The use of 3 equivalents of the Na/benzophenone ketyl reducing agent was found to be ideal as 

more equivalents cause decomposition while fewer causes an incomplete reaction, which 

suggests that the two chlorides from Pt(PEt5)2Cl2 and one chloride from lb are removed as 

NaCl. The N(SiMe3)2 R-group is possibly removed as (SiMej)2N-N(SiMe,)2, although this 
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was not investigated. Interestingly, the reaction of fra/ij-Cl(Et3P)2Pt[C(Cl)=PMes*] (1) with 

Pt(PEt3)2Cl2 and 3 equivalents of sodium benzophenone ketyl also results in the formation of 

n, but it also gives impurities that could not be separated. In order to investigate the role of the 

reducing agent, a reaction was attempted between lb and Na/benzophenone ketyl without any 

Pt(PEt3)2Cl2 present; no reaction was apparent after six hours. Also, if Pt(PEt3)2Cl2 is reduced 

with Na/benzophenone ketyl followed by addition of lb, a ^'P NMR spectrum shows that lb is 

unreacted in solution. EvidenUy, both lb and Pt(PEt3)iCl2 must be present during the addition 

of the reducing agent for this reaction to occur. The reduction reaction of Pt(PEt3)2Cl2 in the 

presence of ethylene is known to produce PtCPEtjjjCC^Hj. and it has been reported that if a 

suitable ligand is not present in soludon the PtCPEt,), fragment that is generated oligomerizes to 

Pt(0) clusters. It is possible that the Pt(PEt3)2 fragment that is generated in eq 5 coordinates 

to the C=P double bond of lb and activates the carbon-bound CI toward reduction by a third 

equivalent of Na/benzophenone ketyl, while in the absence of lb die PtCPEtj), oliomerizes and 

does not react with lb. Similar reactions to that in eq 5 were attempted between lb and 

Pt(PPh3)2Cl2, Pt(Pi-Pr3)2Cl2, Pt(PCy3)2Cl2, and Pt(depe)Cl2; in all cases, compound lb 

remained unreacted in solution indicating that this reaction is not general for other phosphines. 

Preparation of Trinuclear Metal-Cyaphide Complexes. The cyaphlde ligand 

that is coordinated to two platinum centers in complex II contains a lone pair of electrons on 

the CsP phosphorus atom that is a potential site for further coordination. Accordingly, the 

reactions (eq 6) of either one-half equivalent of [Pt(Cl)2(PEt3)]2 or one equivalent of 
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CI PEt3 
yCd)  (a )  W(CO)5  

PEt / / 
' II a-i^.-c-^ « (6) 
/a" /<" ^ 
re.3 /til',,, (MI-„)' = [Pt<Cl),(PE.3)k PE.3 /P^'pb, 

(a) PEt3 (ML„) = W(C0)5(THF) Et3P (c) 

(b) 
(HI) OV) 

W(C0)5(THF) with n in THE at room temperature afford the first examples of trinuclear 

metal-cyaphide complexes Cl(Et3P)2Pt[n-ri', q', ri--CHP{Pt(PEt3)(Cl)2}]Pt(PEt3)2 (III) and 

Cl(Et3P)2Pt[|i-Ti', ri', Ti"-C=P{W(CO)5}]Pt(PEt3)2 (IV), respectively. Complex HI forms 

immediately after the addition of [Pt(Cl)2(PEt3)]2 to II and a ^'P NMR spectrum of the reaction 

mixture showed practically quantitative conversion to HI with a small amount of I^(PEt3)2Cl2 

formed as a by-product; complex HI could not be isolated in pure form as it decomposes 

under vacuum to unidentified materials, presumably through loss of PEt3. In the reaction of 

W(C0)5(THF) with n, the formation of complex IV is complete after 1 h and a small amount 

of W(CO)5(PEt3) forms as a by-product that was easily separated. These reactions are similar 

to those of the ti--coordinated phosphaalkyne complexes (R3P)2Pt(Ti"-R-CsP): in these, q*-

coordination of the phosphaalkyne to the platinum fragment enhances the coordinating ability 

of the lone pair of electrons on phosphorus.^'^^ 

Compounds HI and IV were characterized by ^'P and ^'P{ 'H} NMR spectroscopy and 

the structure of complex IV was determined by X-ray diffraction studies. The ^'P NMR data 

for these compounds are compared in Table 4 along with the starting cyaphide complex (II) 

and the methyl isocyaphide complex (Va) which is a cationic complex of similar structure (see 

below). In all of these complexes, the peaks corresponding to P(x) are conveniently assigned 

by proton-coupled ^'P NMR spectroscopy, in which the P(x) signals remain sharp, while die 

PEt3 signals are broadened by coupling to the ethyl protons. Complex in exhibits 5 distinct 

signals in its ^'P NMR spectrum; peaks corresponding to P(x) at 5 111.2, P(a) at 5 5.0, P(b) at 
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6 15.9 and P(c) at 5 17.2 ppm were assigned based on similar signals in the ^'P NMR spectrum 

of n, while the peak corresponding to P(d) at 5 5.2 ppm was assigned to the PEt3 group in the 

Pt(PEt3)(Cl)2 fragment that is coordinated to the OP phosphorus atom. The peak for P(x) in 

n is split into a doublet of doublet of triplets, while the same peak in HI is now split into a 

doublet of doublet of doublet of triplets; the extra splitting is from the PEt, ligand on the 

Pt(PEt3)(Cl)2 fragment = 472.3 Hz). This is a very large two-bond P-P coupling 

constant that is indicative of a /ranjr-orientation between P(d) and P(x), similar to the trans-' 

= 557 found in the bridging phosphaalkyne complex Mo2(CO)4(Cp)2{t-

BuCP[Pt(PEt3)(Cl)2]} and to the values of trans-'J= 462-483 Hz measured in a series of 

rraAzj-[PtCl2(PR3)(PR'3)] complexes. xhe coordination of the Pt(PEt3)(Cl)2 fragment to 

compound 11 also imparts a large change on the two-bond coupling constant between P(x) and 

the rran5-like PEt, ligand P(b); the value of = 13.7 Hz in II increases to = 

148.0 Hz in in. This effect has also been seen in r|'-phosphaaIkyne complexes; in the 

complex [Pt(dppe)(TI--t-BuC=P)], the coupling constant between the C^P phosphorus and the 

trans-? atom is 28.1 Hz, but when a Cr(CO)5 fragment is coordinated to the OP phosphorus 

atom, this value increases to 177.5 Hz. In fact, all of the couplings between P(x) and the 

other phosphorus signals are increased upon coordination of the Pt(PEt3)(Cl)2 group (see Table 

4). Evidently, the cyaphide phosphorus atom undergoes a change in hybridization upon 

coordination to the metal fragment, acquiring more phosphorus s-electron character in the OP 

bond. 

Complex rV exhibits 4 distinct signals in its ^'P NMR spectrum; the peaks 

corresponding to P(a) at 5 3.1, P(b) at 5 16.6 and P(c) at 5 13.9 ppm were assigned based on 

similar signals in the ^'P NMR spectrum of II and III, while the peak at 5 41.4 ppm was 

assigned to P(x) based on a sharp proton-coupled ^'P NMR signal and the doublet of doublet 

of triplets splitting pattern. The chemical shift of 41.4 ppm is 66 ppm upfield from that of P(x) 

in compound 11 and is similar to the upfield shift of 42 ppm that was measured upon 
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coordination of a WCCO); fragment to the CsP phosphorus atom in the ri'-phosphaalkyne 

complex [Pt(dppe)(r|--t-BuC=P)]J^ The coordination of the W(C0)5 group to complex 11 

results in increased coupling constants (see Table 4) similar to those for HI. The two-

bond coupling constant between P(x) and the /rawj-like PEt3 ligand P(b) is again very large 

"•^p(x)p(b) = 152.9 Hz, and similar to that (Vp,^,p,b, = 148.0 Hz) in HI. Only one set of platinum 

satellites (Vp,^)p,(,) = 507 Hz) could be distinguished for P(x) in compound FV because of the 

complexity of this signal; this coupling constant is larger than that (255 Hz) in II, but still a bit 

smaller than that (676 Hz) in lb. Although no tungsten satellites could be found for P(x), die 

signal for P(b) exhibited an unusually large three bond coupling to tungsten (V^p^,, = 150.77 

Hz), most likely because of the enhanced coupling between P(x) and P(b). 

X-Ray Crystal Structure of CI(Et3P)2Pt[n.-Ti', n') 

CHP{W(CO)5}]Pt(PEt3)2 (FV). A thermal ellipsoid drawing of IV (Figure 2) shows that 

the complex contains a W(C0)5 fragment attached to the CsP phosphorus atom and has many 

structural features in common with the X-ray-determined structure of complex 11.^ Both of the 

platinum atoms in IV are in planar environments; the sum of angles around Pt(l) as defined by 

C(l), P(2), P(3) and Cl(l) is 360.1°, while the sum of angles around Pt(2) as defined by C(l), 

P(l), P(4) and P(5) is 360.4°. The C(l)-P(l) distance (1.663(9) A) in IV is the same within 

error as that (1.666(6) A) in II indicating that coordination of the W(C0)5 has not 

dramatically changed the character of the cyaphide C-P bond. This distance is similar to a C-P 

double-bond distance (e.g., 1.67 A in Ph(H)C=PMes*) and to the C-P distance (1.67(2) A) 

in the n'-phosphaalkyne complex [Pt(PPh3),(Ti--t-BuCsP)],20 and is consistent with 

backbonding from Pt(2) into the n* orbital of the CsP bond affording some 

metallacyclophosphapropene character in this 3-atom unit in IV. The Pt(l)-C(l)-P(l) angle 

(145.2(6)°) is bent from linearity similar to that in 11 (144.0(3)°) and the W(l)-P(l)-C(l) angle 

(136.1(3)°) is bent even further, also consistent with metallacyclophosphapropene character in 

this complex. The W(l)-P(l) distance (2.531(3) A) is very similar to the W-P bond length 
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(2.539(3) A) in the bridging phosphaaikyne complex Mo,(CO)4(Cp);{t-BuCP[W(CO)5]}2^ 

and is slightly longer than typical W-P distances in structurally characterized W(CO)4(PR3)2 

complexes (e.g., 2.502 A in c/j-W(CO)4(PMe3)2).^^ The Pt(2)-C(l) distance (2.104(9) A) in 

rV is slightly longer than the corresponding distance (2.083(5) A) in II, while the Pt( 1 )-C( 1) 

distances (1.952(9) A in IV and 1.950(6) A in II) are the same within error. However, the 

Pt(2)-P(l) distance (2.292(3) A) in FV is shorter than the corresponding distance (2.337(2) A) 

in n. This is consistent with more s-elecu^on character on phosphorus in the CsP bond. 

Alkyiation Reactions of CI(Et3P)2Pt(|a-ri', ri^-CHP)Pt(PEt3)2 (II). The 

reaction (eq 7) of three equivalents of Mel with Cl(Et3P)2Pt(n-Ti', n'-C=P)Pt(PEt3)2 (11) in 

THF for 12 h at 25 °C results in the formation of the methyl isocyaphide complex 

(Cl)(Et3P)Pt(|a-C=PMe)Pt(PEt3)^(I) (Vc) with concomitant formation of the phosphonium salt 

(MePEtj)"^ r. This reaction entails the conversion of a cyaphide (CsF) ligand to an isocyaphide 

(CsPMe) ligand and substitution of a coordinated PEt, ligand (lost as (MePEtj)"^ I ) with an 

iodide ligand; thus, the Mel acts both as a methylating agent and as a phosphine scavenger in 

this reaction. Although complex Vc is stable in THF solution at room temperature for several 

weeks, suitable crystals could not be obtained for an X-ray diffraction study as the compound 

only forms an oil. However, the complex is likely isostructural with the previously obtained 

semi-bridging isocyaphide complex (Cl)(Et3P)Pt(|i-C=PMes*)Pt(PEt3)2(Cl) (2)^ based upon 

its ^'P NMR spectrum (Table 5) and the ''C-"'P coupling constants obtained from the use of 

''C-labeled Mel in this reaction. Thus, the q', ri^-cyaphide ligand in 11 is converted to a semi-

(7) 

Me 
(H) (Vc) 
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bridging isocyaphide ligand in Vc with the formation of a Pt-Pt bond. This reaction has some 

precedent in related isocyanide chemistry as the conversion of coordinated cyanide (CsN ) 

ligands to isocyanide (ONR) ligands with various alkylating agents is a well known synthetic 

route to isocyanide complexes, although these reactions have only been carried out on terminal 

cyanide complexes.^^ This new synthetic route to an isocyaphide complex is much different 

than the reaction (eq 1) of the phosphavinyi complex rran5'-Cl(Et3P)2Pt[C(Cl)=PMes*] (1) 

with Pt(PEt3)4 to generate the semi-bridging isocyaphide complex (Cl)(Et3P)Pt(|i-

C=PMes*)Pt(PEt3)2(Cl) (2)^ or the reactions (eq 2) of [Cp2(CO)2Fe2(fi-CO)({i-CSMe)]* with 

RP(H)(SiMe3) and DBU to generate the bridging isocyaphide complexes [Cp2(CO)2Fe2(M.-

CO)(|i-C=PR)] (3);^ both of these syntheses were limited by the use of bulky aryi R-groups 

on the CPR phosphorus atom. In contrast, the reaction of II with Mel allows for the formation 

of an isocyaphide with a sterically small methyl group and could conceivably be a more general 

route to diplatinum isocyaphide complexes. In order to test this, the reaction in eq 7 was 

attempted with several different alkyi and aryl halides (e.g., benzyl bromide, /-propyl iodide, 

allyl bromide, o-iodo toluene and 2,4,6-ui-rerr-butyIben2yl bromide) under the same reaction 

conditions and stoichiometry as in the Mel reaction. The reactions of both benzyl bromide 

(BnBr) and /-propyl iodide (/-PrI) with II afforded similar isocyaphide products 

(Cl)(Et3P)Pt(^-C=PBn)Pt(PEt3)2(Br) (VI) and (Cl)(Et3P)Pt(n-C=P/-Pr)Pt(PEt3)2(I) (VII), 

respectively, as evidenced by ''P NMR spectroscopy (see Table 5). However, the benzyl 

derivative could not be separated from impurities that were present, and the /-Pr derivative was 

unstable and decomposed before the reaction was complete. The reaction of allyl bromide with 

n formed completely different products that could not be isolated, while the aryl halides did 

not react with compound II, even after stirring for several days at room temperature. 

However, the results with BnBr and /-PrI are encouraging and suggest that other alkyl halides 

may be successful in this reaction. 
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Complex Vc was characterized by ^'P, ''P{ 'H} and '^C{ 'H) NMR spectroscopy. The 

"'P NMR spectmm of complex Vc shows very similar chemical shifts and coupling constants 

(Table 5) to those measured in the semi-bridging isocyaphide complex (Cl)(Et3P)Pt()j.-

C=PMes*)Pt(PEt3)2(Cl) (2)9 and is thus proposed to exhibit the same structure. The ^'P 

NMR spectrum of Vc exhibits three different signals. The peak at 5 155.4 ppm, assigned to 

P(x), is split into a doublet of triplets with two different "'Pt satellites, indicative of the 

unsymmetrical, semibridging bonding mode of the C=PMe ligand. The doublet = 

15.3 Hz) arises from coupling to the single PEtj ligand (P(b)) on Pt(2), while the triplet 

(Vp(^)p,^, = 12.1 Hz) results from coupling to the two equivalent PEt, ligands (P(a)) on Pt( 1). 

The larger coupling constant to platinum = 564.7 Hz) is assigned to coupling with the 

4-coordinate platinum E^(2), while the smaller Pt-P coupling constant (Vp„„p,^, = 231.9 Hz) is 

assigned to coupling with the 5-coordinate platinum atom Pt(l); these assignments are made 

based upon the assignments in compound 2 and by the larger 7p^ coupling constants that are 

typically found in platinum complexes with lower coordination numbers.24 From these 

coupling constants, the signal at 5 8.7 ppm is assigned to P(a), while the signal at 5 21.52 is 

assigned to P(b). Because the signal for P(a) is farther upfield than the analogous peak in 2, 

while the peaks for P(b) have quite similar chemical shifts, it is assumed that the iodide ligand 

is on the platinum that contains the two P(a) PEt, groups (Pt(l)). One of the unique aspects of 

the ^'P NMR spectra of Vc, which gives precedent to it being isostructural with 2, is the large 

differences in the one-bond /pjp coupling constants in the signals corresponding to P(a) and 

P(b); for P(a) in Vc, the value of '/p,(„p(a, = 2338.9 Hz is similar to those found in trans-

Pt(PEt3)2X2 complexes,24 while for P(b), the value of '/p«2)P(b) = 5173.7 Hz is very large and 

more similar to those found in three-coordinate Pt(0) complexes.24 This difference in the 

coupling constants is greater in Vc than in compound 2 and has been discussed previously in 

the analogous semibridging carbonyl complex (Cl)(Ph3P)Pt(n-CO)Pt(PPh3),(Cl) (4) which is 

very similar in structure to Vc and 2. but with PPh, instead of PEt, ligands and a semibridging 
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CO ligand in place of the CPR Iigands.25,26 Complex 4 exhibits a value of 'yp,p = 2680 Hz 

for the two equivalent 5-coordinate platinum PPhj groups (P(a)) and a value of '/pjp = 5440 Hz 

in the 4-coordinate platinum PPh3 group (P(b)) (see Table 5 for further comparisons). This 

difference was rationalized by suggesting some degree of mixed valence character between the 

two platinum atonis.25 Xo further verify that the methyl group is attached to the phosphorus 

atom in complex Vc, the reaction was carried out using '^C-labeled Mel. The ^'P NMR 

spectrum of labeled Vc exhibited an extra doublet in the signal for P(x) from coupling to the 

labeled methyl group with = 48.9 Hz. This value is similar to the value of = 51.1 

Hz found in the phosphonium salt (MePEtj)"^ I" product of this reaction. Interestingly, the 

signal for P(b) also exhibited a small coupling CJp^^yc = 10.6 Hz) to the methyl group. The '^C 

NMR signal for the methyl group occurred at 5 10.5 and was split into a doublet of doublets by 

P(x) and P(b). This peak also exhibited a small Pt-C coupling constant of Vp,c = 51.2 Hz, 

which is most likely a coupling with Pt(2) which is bonded more strongly to the CPR group. 

The ^'P NMR spectra of complexes VI and VTI (Table 5) are quite similar to those of Vc, and 

these compounds are proposed to be of similar structure. These spectroscopic results, along 

with comparisons with those of compounds 2 and 4, strongly suggest that complexes Vc, VI 

and Vn contain semibridging isocyaphide ligands. 

Mechanistic Studies of the Formation of (CI)(Et3P)Pt(^-

C=PMe)Pt(PEt3)2(I) (Vc). A likely pathway (Scheme 1) for the formation of complex Vc 

from complex II is the initial methylation of the CsP phosphorus atom to generate a cationic 

n', n'-isocyaphide intermediate (Va). The iodide anion can then attack at E^(2) to generate the 
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Scheme 1 

(H) + Mel 
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bridging isocyaphide intermediate Vb, which loses a PEtj group and forms a metal-metal bond 

to generate the product Vc. An intermediate similar to Vb was postulated in the reaction (eq 1) 

of the phosphavinyl complex /'ra«5-Cl(Et3P)2Pt[C(Cl)=PMes*] (1) with PtCPEtj)^ to generate 

the semi-bridging isocyaphide complex (CI)(Et3P)Pt(M.-C=PMes*)Pt(PEt3)2(Cl) (2).^ In an 

attempt to verify this pathway by isolation of the cationic TI', n'-isocyaphide intermediate (Va), 

complex n was reacted with one equivalent of Mel in the presence of two equivalents of 

NaBPh4 in THF at room temperature. The color of the solution turned to a very deep ruby red 

color after Ih, and a ^'P NMR spectrum (see below) showed a new complex that matches the 

structure drawn for Va where the iodide anion has been replaced with (BPh4 ). This complex 

was then isolated in reasonably pure form by filtering the solution and adding hexanes to form 

an oil of mainly Va. When a ten-fold excess of Nal was then added to a solution of Va in 

THF, the color changed from deep red to light orange in 10 min, and a ^'P NMR spectrum 

showed that this complex was completely converted to the semibridging isocyaphide complex 

Vc, which strongly suggests that Va is an intermediate that forms before Vc in the reaction of 

Mel with complex EE. In a separate experiment, complex n was reacted with MeOTf in THF; 

the color turned to deep red in a matter of minutes and a ^'P NMR spectrum of the solution 

again showed complex Va where a triflate anion is substituted for the iodide anion. Reaction 

of this solution with a ten-fold excess of Nal afforded complex Vc, providing further evidence 
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for the pathway outlined in Scheme 1. Although there was no evidence in the ^'P NMR spectra 

for other intermediates, Vb is a likely intermediate that explains the rearrangement of the ri', x\'-

isocyaphide ligand in Va to the semibridging isocyaphide ligand in Vc. In contrast to Vc, 

which contains a Pt-Pt bond, the ^'P NMR spectrum (see below) of Va suggests that there is 

no Pt-Pt bond in this cationic isocyaphide complex. Clearly, compound Va does not contain a 

semibridging isocyaphide similar to Vc, and it is not clear why substitution of a PEt, group in 

Va by an iodide anion causes this rearrangement to take place. Complex Va contains the first 

example of an ti', n'-bridging isocyaphide ligand. 

Although complex Va could not be isolated in pure form, the ^'P NMR spectrum is 

characteristic of an ri', ti'-bridging isocyaphide structure and shows features (Table 4) very 

similar to those in the spectra of the t)', ti*-bridging trimetallic cyaphide complexes with a 

Pt(Cl)2(PEt3) fragment (III) and a W(C0)5 fragment (FV) on the cyaphide phosphorus atom. 

The signal at 6 34.7 ppm in Va, assigned to P(x), is shifted 120 ppm upfield from the 

corresponding P(x) peak in Vc; this shift is most consistent with an ti', Ti"-bridged species. 

Interestingly, the chemical shift is quite similar to that (5 41.4 ppm) in the tungsten-coordinated 

cyaphide complex FV, which differs only in that it is neutral and contains a W(C0)5 group in 

place of the Me group on Va. Also supporting the proposed structure is the fact that the 

splitting patterns and coupling constants in Va, in and IV are all quite similar (Table 4). The 

coupling constants between P(x) and the PEtj groups again are larger than those in the ri', n'-

cyaphide complex (II), with the most dramatic effect again being a large coupling = 

148.9 Hz) between P(x) and P(b). This is very similar to the values found in III 

(Vp(,,p(b, = 148.0 Hz) and IV (Vp(^,p,b, = 152.9 Hz). The "^Pt-^'P coupling constants found in 

Va are also similar to those found in III and FV (Table 4) and provide further evidence for the 

proposed structure. Since there is no "^Pt-^'P coupling of P(a) with E^(2) or between P(b) and 

P(c) with Pt( I), the existence of a Pt-Pt bond in Va is doubtful; in Vc and 2 which contain Pt-

Pt bonds, these couplings to the platinum atom of the adjacent metal fragment were somewhat 
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large (43-512 Hz). To further verify that the methyl group is attached to the cyaphide 

phosphorus atom, complex Va was prepared by reacting complex II with labeled Mel in the 

presence of NaBPh4. The ^'P NMR spectrum of this labeled complex exhibited additional 

doublets [P(x) ('/p,^)c = 71.5 Hz), P(b) (Vp(b)c = 8.4 Hz) and P(c) = 12.6 Hz)] as a 

result of coupling to the labeled methyl group. The '^C NMR spectrum also displayed a peak 

for the methyl group at 5 8.7 ppm that was split into a doublet of doublets of doublets by these 

three phosphorus atoms. These results are entirely consistent with the proposed structure of 

Va and indicate that the attachment of a W(CO)5, Pt(Cl)2(PEt3) or Me"" group to the cyaphide 

phosphorus atom in complex II gives products with very similar ^'P NMR spectra and 

structures. 

Summary 

Comparison of the reactivity of the new phosphavinyl complex trans-

Cl(Et3P)2Pt[C(Cl)=PN(SiMe3)2] (lb) with the previously obtained complex trans-

Cl(Et3P),Pt[C(Cl)=PMes*] (1)^2 has shown that the substitution of the Mes* group with a 

N(SiMe3)2 group does not result in large changes in the NMR properties or structural features 

of these two complexes; the structure of (lb) was determined by X-ray diffraction studies to 

be quite similar to that of 1 with no evidence for conjugation from the nitrogen lone pair of 

electrons into the C=P double bond. However, compound lb showed much different 

reactivity than that of 1 and reacted with Pt(PEt3)2CU and Na/benzophenone ketyl to afford a 

new synthetic route to the previously obtained TI', n •-bridged cyphide dimer Cl(Et3P)2Pt(n-ri', 

ri"-C=P)Pt(PEt3)2 (11). This reaction provided a much simpler and more efficient preparation 

of complex II and allowed us to further study the reactivity of this useful complex. Thus, 

complex n was reacted with one-half equivalent of [Pt(Cl)2(PEt3)], or with one equivalent of 

W(C0)5(THF) to generate the first examples of trinuclear metal cyaphide complexes 

Cl(Et3P)2Pt[tx-ii', Ti', n'-CsP{Pt(PEt,)(Cl),}]Pt(PEt3). (Ill) and CI(Et,P)2Pt[^-ti', n', n'-
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CHP{W(CO)5l]Pt(PEt3)2 (FV), respectively, in which the lone pair of electrons on the 

cyaphide (CsP) phosphorus atom has been utilized to coordinate to a third metal fragment. The 

structure of the tungsten adduct (IV) was determined by X-ray diffraction studies and showed 

that the cyaphide ligand has some metallacyclophosphapropene character as both the 

PtCPEtjjjCl and the W(C0)5 fragments are bent back from the axis of the CsP bond. Complex 

n also reacted with alkylating agents to generate semibridging isocyaphide complexes of the 

type (Cl)(Et3P)Pt(^-C=PR)Pt(PEt3)2(X); when R = Me (Vc), it was found that a cationic TI', 

Ti*-bridging isocyaphide complex [(Cl)(Et3P)2Pt(!x-Ti', Ti--C=PMe)Pt(PEt3)2](I) (Va) formed 

first in this reaction and was isolated as the triflate salt by reacting complex H with MeOTf. 

This complex was converted into the semibridging isocyaphide complex (Vc), by reacting it 

with excess NaT. These alkylation reactions represent the first examples of conversion of a 

cyaphide (C=P) ligand into an isocyaphide (CsPR) ligand and demonstrate that isocyaphide 

complexes with non-bulky alkyl groups can be stabilized on transition metals. The ^'P NMR 

spectrum of the triflate salt of complex Vc strongly suggests that this is the first example of a 

complex containing an n'. n'-bridged isocyaphide ligand and demonstrates a further 

coordination mode of these new ligands. 

Experimental Section 

General Procedure. All manipulations were carried out under a dry, oxygen-free 

argon atmosphere, using standard Schlenk techniques. All solvents employed were reagent 

grade and dried by refluxing over appropriate drying agents under nitrogen. Tetrahydrofiiran 

(THF) and diethyl ether (Et^O) were distilled over sodium benzophenone ketyl, while hexanes 

and dichloromethane (CHiCU) were distilled over CaH,. 

The ^'P{ 'H} and ^'P NMR spectra were recorded on a Bruker AC 200-MHz 

spectrometer using 85% H3PO^ (5 0.00 ppm) as the external standard. The '^C{ 'H} and '^C 

NMR spectra were recorded on a Bruker DRX 400-MHz spectrometer using CDCIj as the 
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internal standard. Elemental analyses were performed by National Chemical Consulting, Inc., 

Tenafly, NJ. The compounds Pt(PEt3)4,27 Cl,C=PN(SiMe3)2,28 [Pt(Cl)2(PEt3)],,29 

Pt(PR3)2Cl2 and Na/benzophenone ketyl were prepared by literature methods. Phosphine 

ligands were purchased from Strem and used without further purification, with the exception of 

PPh,, which was recrystallized from MeOH. Methyl iodide (Mel) and methyl triflate (MeOTf) 

were purchased from Aldrich and used without further purification. W(C0)5(THF) was 

prepared by photolysis of WCCO)^ in THF for 6 h at 20°C. 

Preparation of fra/zs-Cl(Et3P)jPt[C(Cl)=PN(SiMe3)2] (lb) through 

Intermediate cw-CI(Et3p)jPt[C(CI)=PN(SiMe3)J (la). To a cooled (-50°C) solution 

of Pt(PEt3)4 (1.50 g, 2.25 mmol) in hexanes (20 mL) was added Cl2C=PN(SiMe3)2 (0.616 g, 

2.25 mmol). A ^'P{'H} NMR spectrum taken 10 min after the addition (-50°C) showed 

complete conversion to la. After the solution had warmed to 0°C over the course of 30 min, a 

^'P{ 'H} NMR specUaim showed that compound la had completely isomerized to lb. The 

almost colorless solution was warmed to room temperature over the course of 10 min and the 

solvent was removed under vacuum. The residue was treated with 20 mL of hexanes, filtered, 

and the filtrate was concentrated to 10 mL. A white precipitate formed, which was found to be 

Pt(PEt3)2Cl2 by comparison of its ^'P NMR spectrum with that of an authentic sample. The 

precipitate was filtered off and the filtrate was concentrated to 5 mL under vacuum. The light 

orange/brown solution was cooled slowly to -78°C for 3 d after which time large, light yellow 

crystals had formed. The crystals were isolated by cannulating off the mother liquor, washing 

with 2x5 mL portions of hexanes at -78°C, and drying under vacuum to give lb (1.24 g, 

78%). ^'P{ 'H} NMR (hexanes) (see eq 4 for atom labels) for la, -50°C: 5(P(x)) 225.1 (dd, 

'«^p(x,p(b) = 33.0 Hz, = 8.3 Hz, Vp,p,,, = 410.0 Hz), 5(P(b)) 10.1 (dd, Vp,„p,„ = 33.0 Hz, 

"V)p(ai = 16.2 Hz, 7p,p(b, = 1908 Hz), 5(P(a)) 5.6 (dd, = 16.2 Hz, = 8.3 Hz, 

'^p(a) = 3874 Hz). For lb, 25°C: 5(P(x)) 222.3 (t, -Vp,,,p,„ = 20.0 Hz, Vp,p,,, = 676.0 Hz), 
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5(P(a)) 14.1 (d, = 20.0 Hz, 'yp,p,,, = 2680 Hz). Anal. Calcd for C„H,8CUN,P3Pt,Si2 

(lb): C, 32.34; H, 6.86; N, 1.98. Found: C, 31.25; H, 6.62; N, 1.87. 

Preparation of CI(Et3P)2Pt(p.-ri', n^-C=P)Pt(PEt3)2 (II). To a dry mixture of 

rmnj-Cl(Et3P)2Pt[C(Cl)=PN(SiMe3),] (lb) (1.00 g, 1.42 mmol) and Pt(PEt3)2Cl2 (0.747 g, 

1.49 mmol) at room temperature was added dropwise with stirring 20.8 mL of a solution of 

0.204 M Na/benzophenone ketyl in THF (4.25 nrniol) (the molarity of the Na/benzophenone 

solution was determined by quenching a measured amount with water, and titrating with 

standardized HCl solution). The addition was done at a rate that was determined by the color 

change; as the color turned blue, addition was halted until the color changed back to orange. 

The total time of the addition was ca 45 min, after which time the color of the solution was dark 

red with a large amount of NaCl precipitate. The solution was filtered through Celite and the 

solvent was removed from the filtrate under vacuum. Extended drying under vacuum, 

especially with heating, was found to cause decomposition. The dark red residue was treated 

with hexanes (30 mL), filtered through Celite and the filtrate was reduced in volume to 10 mL. 

A ^'P NMR spectrum of this solution showed pure II, however benzophenone was present as 

the only impurity. The solution was cooled slowly to -78°C and kept at this temperature for 1 

week, after which time dark red crystals of II had formed. The crystals were isolated by 

cannulating off the mother liquor, washing with 2x5 mL portions of hexanes at -78 °C, and 

drying under vacuum to give II (1.05 g, 79%). Compound II was characterized by 

comparison of its ^'P NMR spectrum with that of an authentic sample. ''P{ 'H} NMR (THF) 

(see eqn 5 for atom labels): 5(P(x)) 107.0 (ddt, Vp,,)p,b) = 13.7 Hz, = 10.7 Hz, Vp(,,p(„ 

= 10.7 Hz, = 255 Hz, '7p„,,p,,, = 58 Hz), 5(P(c)) 18.6 (dd, Vp,,,p,„ = 35.1 Hz, Vp,,,p,„ 

= 10.7 Hz, 'yp„,,p,„ = 3619 Hz, Vp„„p,,, = 137 Hz), 5(P(b)) 15.0 (ddt, = 35.1 Hz, 

%b,P(x, = 13.7 Hz, Vp,„p,,, = 4.5 Hz, '/p^^.p,,, = 3155 Hz), 5(P(a)) 4.9 (dd, Vp,„,p,,, = 10.7 Hz, 

•^P(a)P(b) = •^pt(np(a) = 2936 Hz). 
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Preparation of Cl(Et3P)jPt[^-n', n', n'-CsP{Pt(PEt3)(Cl),}]Pt(PEt3), (III). 

To a dry mixture of Cl(Et3p)2Pt(n-r|', n"-C=P)Pt(PEt3)3 (II) (O.ICX) g, 0.106 mmol) and 

[Pt(Cl)2(PEt3)]2 (0.0408 g, 0.0531 mmol) at room temperature was added 10 mL of THF with 

stirring. The color turned from dark orange to light orange immediately. A ^'P NMR spectrum 

taken after 5 min of stirring showed quantitative formation of EH, with a small amount of 

Pt(PEt3)2Cl2 present (characterized by comparison of its ^'P NMR spectrum with that of an 

authentic sample). The volume of the solvent was reduced to 2 mL, and 5 mL of hexanes was 

added to precipitate the Pt(PEt3)2Cl2 impurity. The solution was filtered, and a "P NMR 

spectrum of the filtrate showed very pure HI. Compound HI is stable in hexanes for several 

days at -30°C, but decomposes at room temperature in about 1 d. Compound HI could not be 

purified for elemental analysis as it decomposed to unidentified products under vacuum and 

was characterized by ^'P NMR spectroscopy. ^'P{ 'H} NMR (THF) (see eq 6 for atom labels): 

5(P(x)) 107.0 (dddt, = 472.3 Hz, = 148.0 Hz, = 42.5 Hz, = 

21.4 Hz), 5(P(c)) 17.2 (ddd, Vp,,,p„, = 42.5 Hz, Vp,„p,„ = 22.0 Hz, Vp,„p,„ = 8.7 Hz, 

= 2926 Hz), 5(P(b)) 15.9 (ddd, Vp,„p,,, = 148.0 Hz, Vp,„p„, = 56.0 Hz, Vp,,,p,„ = 8.7 Hz, 

'•/p.t2)pcb, = 3601 Hz), 5(P(d)) 5.21 (ddd, Vp,„p,,, = 472.3 Hz, Vp,,,p,„ = 56.0 Hz, Vp,„p,„ = 22.0 

Hz, 7p„3,p,,, = 3020 Hz), 5(P(a)) 5.0 (d. Vp,„p,„ = 21.4 Hz, 'yp,„,p,,, = 2829 Hz) (The "^Pt-^'P 

coupling constants in the P(x) signal were not possible to determine because of the complexity 

of the splittings). 

Preparation of Cl(Et3P),Pt[u.n', n', n'-C=P{W(CO)s}]Pt(PEt3)j (IV). To a 

solution of Cl(Et3P)2Pt(^i-n', n--CHP)Pt(PEtj)2 (H) (0.500 g, 0.531 mmol) in THF (10 mL) at 

room temperature was added W(C0)5(THF) (0.531 mmol) in THF (20 mL) with stirring. The 

color of the solution turned from dark orange to dark red after I h of stirring. The solvent 

volume was reduced to ca 3 mL under vacuum, and 15 mL of hexanes was added. The flask 

was cooled to -30°C for I h with formation of an oily-solid impurity. The solution was 

filtered, the filtrate was reduced in volume to 5 mL and then cooled slowly to -78°C for 3 d 
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after which time light orange crystals of FV had formed. The crystals were isolated by 

cannulating off the mother liquor, washing them with 2x5 mL portions of hexanes at -78°C, 

and drying under vacuum to give FV (0.375 g, 56%). ''P{ 'H} NMR (THF) (see eq 6 for 

atom labels): 5(P(x)) 41.4 (ddt, Vp(„p,b, = 152.9 Hz. = 38.7 Hz, = 18.9 Hz, 

= 507 Hz), 5(P(c)) 13.9 (dd, Vp,„p,„ = 38.7 Hz, = 9.1 Hz, = 2917 Hz), 

5(P(b)) 16.6 (dd, Vp,„p,,, = 152.9 Hz, Vp,„p,„ = 9.1 Hz, 7p„2,p,„ = 3568 Hz), 5(P(a)) 3.1 (d, 

•^P(a)P(x) ~ "^PKUPfa) ~ 2818 Hz). 

Preparation of [(CI)(Et3P)Pt(^-C=PMe)Pt(PEt3)2(I)] (Vc). To a stirred 

solution of Cl(Et3P)2Pt(|i-r|', ri'-CsP)Pt(PEt3)2 (H) (0.500 g, 0.531 mmol) in THF (10 mL) at 

room temperature was added Mel (0.226 g, 1.59 mmol) all at once. After stirring for 12 h at 

25°C, the color had changed from dark, orange to light orange and a precipitate of [MePEtj]!' 

had formed (characterized by comparison of its ^'P NMR with an authentic sample). The 

solution was filtered, the solvent was removed from the filtrate under vacuum, and the residue 

was treated with 25 mL of hexanes. After reducing the solvent under vacuum to 5 mL, the 

solution was filtered and cooled slowly to -78°C for 2 d to form an oil of Vc that was pure by 

^'P NMR spectroscopic studies (Yield 0.386 g, 75%). A similar preparation was carried out 

using '^C-labeled Mel in order to obtain '^C-^'P coupling constants. ^'P{ 'H} NMR (TFCF) 

(see eq 7 for atom labels): 5(P(x)) 155.4 (dt, Vp,,)p,b, = 15.3 Hz, Vp,„p(„ = 12.1 Hz, Vp„2,p,„ = 

564.7 Hz, Vp„„p,„ = 231.9 Hz), 5(P(b)) 21.5 (d, Vp,,,p,„ = 15.3 Hz, = 5173.7 Hz, 

%(.,p(b, = 463.4 Hz), 5(P(a)) 8.7 (d, Vp,,,p,,, = 12.1 Hz, 'yp,,„p,„ = 2338.9 Hz, = 43.5 

Hz). '^C{'H} NMR (QD^): 5(CH3P) 10.5 (dd, = 48.9 Hz, Vcp,b, = 10.6 Hz, Vcp.,,, = 

51.2 Hz). 

Formation of [Cl(Et3P),Pt(^i-Ti', Ti'-C=PMe)Pt(PEt3)j]* (Va). Method A. 

To a stirred solution of Cl(Et3P)2Pt(^-ti', n'-C=P)Pt(PEt3)3 (II) (0.350 g, 0.372 mmol) in 

THF (15 mL) at room temperature was added MeOTf (0.0610 g, 0.372 mmol) all at once. 

After stirring for 5 min, the color of the solution changed from dark orange to dark, ruby red. 
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The volume of the solution was reduced to 2 mL and 15 mL hexanes was added to form a dark 

red oil that separated from solution. The remaining light red solution was removed from the oil 

with a cannula, and the oil was washed with 3x8 mL portions of hexanes to afford the triflate 

anion of Va (crude yield 0.279 g, 68%). A ^'P NMR spectrum showed that this oil contained 

a small amount of impurities which were more prevalent after 1 d. Complete decomposition 

was evident after 1 week at room temperature. (The ^'P NMR spectrum was the same as that 

for the BPh4' salt below). 

Method B. To a stirred solution of Cl(Et3P)2Pt(|x-n', ti--C=P)Pt(PEt3)2 (II) (0.200 

g, 0.212 mmol) and NaBPh4 (0.145 g, 0.425 mmol) in THF (10 mL) at room temperature was 

added Mel (0.302 g, 0.212 mmol) all at once. The color of the solution turned from dark 

orange to very dark red after 3 h of stirring. The solution was treated with 10 mL of hexanes, 

and a large amount of oily precipitate formed. The solution was filtered, and the solvent in the 

filtrate was removed under vacuum. The residue was dissolved in 2 mL of THF, and 15 mL 

of hexanes was added to form a dark red oil that separated from the solution. The oil was 

isolated by cannulating off the solution, washing with 3x8 mL portions of hexanes followed by 

3x5 mL portions of Et^O to afford the BPh^' salt of Va (crude yield 0.103 g, 38%). A similar 

preparation was carried out using '^C-labeled Mel in order to obtain '^C-^'P coupling 

constants. ^'P{'H} NMR (THF) (see Scheme I for atom labels); 5(P(x)) 34.7 (ddt, Vp(^,p,b) = 

148.9 Hz, = 23.8 Hz, Vp,,,p,,, = 20.6 Hz), 5(P(c)) 20.1 (dd, Vp,„p<„ = 23.8 Hz, Vp,„p,„ 

= 10.2 Hz, '7p,p_,p,„ = 2441 Hz), 5(P(b)) 18.7 (ddt, Vp^^.p,,, = 148.9 Hz, Vp^^.p,,, = 10.2 Hz, 

X,P(a, = 5.7 Hz, 'yp,,,p,,, = 3640 Hz), 5(P(a)) 8.1 (dd, Vp,„p,,, = 20.6 Hz, Vp,,,p,„ = 5.7 Hz, 

'•^pi(i)p(a) = 2661 Hz). (The '^^Pt-^'P coupling constants in the P(x) signal were not possible to 

determine because of the complexity of the splittings). '^C{ 'H} NMR (THF); 5(CH3P) 8.7 

(ddd, Vcp,,, = 71.5 Hz, Vcp„, = 12.6 Hz, = 8.4 Hz). 
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Conversion of [Cl(Et3P),Pt(^-ti', n^-C=PMe)Pt(PEt3)2]* (Va) to 

[(CI)(Et3P)Pt(|j.-C=PMe)Pt(PEt3)2(I)] (Vc). To a stirred solution of Va (0.100 g, 

0.0784 mmol) in THF (20 mL) at room temperature, prepared as in Metiiod B above, was 

added Nal (0.118 g, 0.784 mmol) as a solid. After stirring for 10 min, the color had changed 

from dark red to light orange. The solvent was removed under vacuum, and the residue was 

taken up in 20 mL of hexanes. The solution was filtered over Celite, and the filtrate was 

shown to contain mainly Vc by a ^'P NMR spectrum, but could not be isolated pure as it 

contained impurities that likely resulted from decomposition of Va before or during the 

reaction. 

X-ray Crystallographic Study of fra/is-Cl(Et3P)jPt[C(CI)=PN(SiMe3)jl 

(lb). Diffraction-quality crystals of lb were obtained by recrystallization from hexanes at 

-78°C. Data collection and reduction information are given in Table I. A light orange crystal 

of lb was mounted on a glass fiber for data collection. Cell constants were determined from 

reflections found in a rotation photograph. High-angle cell constants were determined from a 

subset of intense reflections in the range of 35.0 to 50.0° 20. The data were corrected for 

Lorentz and polarization effects. A correction based on nonlinear decay in the three standard 

reflections was applied to the data. An absorption correction based on measured crystal faces 

was applied. The space group Pbca was unambiguously determined by systematic absences 

and intensity statistics.^ I A successful direct methods solution was calculated which provided 

all non-hydrogen atoms from the E-map. All non-hydrogen atoms were refined with 

anisotropic displacement parameters. All hydrogen atoms were refined as riding-atoms with C-

H distances of 0.96 A. The hydrogen atoms in methylene groups were refined with individual 

isotropic displacement parameters while methyl hydrogen atoms were refmed as groups. 

Selected bond distances jmd bond angles are given in Table 2. 

X-ray Crystallographic Study of Cl(Et3P)2Pt[n-ri', n') 

C=P{W(CO)s}]Pt(PEt3), (IV). Diffraction-quality crystals were obtained by slow 
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evaporation of an Et^O solution of FV. Data collection and reduction information are given in 

Table 1. An orange crystal of FV was mounted on a glass fiber for data collection. An initial 

set of cell constants was calculated from reflections taken from three sets of 20 frames. Final 

cell constants were calculated from a set of 5625 strong reflections taken during the data 

collection. The space group P2,/n was unambiguously determined by systematic absences and 

intensity statistics.^ ̂  A hemisphere-type data collection was employed in which a randomly 

oriented region of space was surveyed to the extent of 1.3 hemispheres to a resolution of 0.84 

A. Three major swaths of frames were collected with 0.30° steps in co, providing a high 

degree of redundancy. A successful direct methods solution was calculated which provided 

most non-hydrogen atoms from the E-map. Several full-matrix least squares difference Fourier 

cycles were performed which located the remainder of the non-hydrogen atoms. All non-

hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atom 

positions were generated with ideal geometries and refined as riding, isotropic atoms. One 

triethylphosphine group (P4) was disordered in a 0.50:0.50 ratio, and required the use of 426 

restraints. The P4 group is duplicated (P4') in order to make a separate group, both of which 

have the same parameters. These groups were refined isotropically with additional restraints 

and the other triethylphosphine groups in the molecule were used to group the two partially 

occupied groups in SHELTXTL SAME restraints.31 Selected bond distances and bond angles 

are given in Table 3. 
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Table 1. Crystal and Data Collection Parameters for rra/ij-Cl(Et3P)2Pt[C(CI)=PN(SiMe3)2] 

(lb) and CI(Et3P),Pt[n-ri'. n'. n'-C^Pi W(C0)s}]Pt(PEt3). (IV). 

lb IV 
formula 

space group 

a, A 

b, A 

c, A 

a. deg 

P, deg 

7. deg 

V, A' 

Z 

^calc g/^tn 

crystal size, mm 

H, mm ' 

data collection instrument 

radiation (monochromated in 

incident beam) 

temp, K 

scan method 

data collection range, 

no. of data collected 

no. of unique data total 

Table 1. (continued) 

C,<,H,8Cl2NP3Si,Pt 

Pbca 

11.802(2) 

15.060(3) 

35.060(3) 

90 

90 

90 

6231.7(16) 

8 

1.504 

0.377 X 0.377 x 0.125 

12.244 

Siemens P4RA 

Cu Ka(^= 1.54178 A) 

213(2) 

2 6 - 9  

4.0-115.0; 0, deg 

7857 

4171 

C,,H^ClO,P,Pl,W 

P2,/n 

II.0994(2) 

33.5717(2) 

12.4301(1) 

90 

III.659(1) 

90 

4304.76(9) 

4 

1.952 

0.4x0.12 x0.12 

9.429 

Siemens SMART 

Mo Ka (^0.71073 A) 

173(2) 

Area Detector, o>-frames 

1.21-25.07; 20, deg 

21054 

7544 
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lb IV 
with I> 2c (I) 3207 5738 

no. of parameters refined 278 390 

trans factors; max; min 0.2836/0.0379 1.000/0.433 

R" (I>2a (I)) 0.0368 0.0476 

Rj (I>2(t (D) 0.0442 0.0942 

quality of Fit incUcator' 1.33 1.023 
largest peak, e/A'^ 1.57 1.462 

"/? = Zllf J-IFJI/SIFJ. X = [2:vKIFo'-'^cl)Vzvt;IF/]"'-; vv= l/(r(IFol). ^Quality-of-fit = 

[ZwdFol-IF.OVCA^obs-Vameters)]"'-
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Table 2. Selected Bond Distances (A) and Angles (deg) for trans-

CI(Et3P),Pt[C(CI)=PN(SiMe3),J (lb) 

Pt-C(l) 1.990(7) 

Pt-P(2) 2.314(2) 

Pt-P(3) 2.313(2) 

Distances (A) 

Pt-Cl(2) 2.373(2) 

C(l)-P(l) 1.690(7) 

Cl(l)-C(l) 1.778(7) 

P(l)-N(l) 1.741(6) 

N(l)-Si(l) 1.744(6) 

N(l)-Si(2) 1.762(6) 

Bond Angles (deg) 

Cl(2)-Pt-P(2) 144.4(4) Cl(2)-Pt-P(3) 162.4(2) 

a(2)-Pt-c(i) 48.8(2) P(2)-Pt-P(3) 104.2(2) 

P(2)-Pt-C(I) 158.1(2) P(3)-Pt-C(l) 152.57(9) 

C(l)-P(l)-C(2) 101.5(2) Pt-C(l)-CI(l) 93.41(8) 

Pt-C(l)-P(l) 147.54(10) Cl(l)-C(l)-P(l) 113.85(9) 

"Numbers in parentheses are estimated standard deviations in the least significant digits. 
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Table 3. Selected Bond Distances (A) and Angles (deg) for CI(Et3P)2Pt[n-Ti', q', TI*-

CsP{W(CO)5}]Pt(PEt3)2 (IV). 

Distances (A) 

Pt(I)-C(l) 1.952(9) Pt(2)-P(l) 2.292(3) W(l)-C(2) 2.042(13) 

Pt(l)-P(3) 2.324(3) Pt(2)-P(4) 2.270(3) W(l)-C(3) 2.048(14) 

Pt(I)-P(2) 1.977(5) Pt(2)-P(5) 2.285(3) W(l)-C(4) 2.014(12) 

Pt(l)-Cl(l) 2.393(3) C(l)-P(l) 1.663(9) W(l)-C(5) 2.032(13) 

Pt(2)-C(l) 2.104(9) P(l)-W(l) 2.531(3) W(l)-C(6) 1.978(11) 

Bond Angles (deg) 

C(l)-Pt(l)-Cl(l) 179.1(3) Cl(l)-Pt(l)-P(2) 90.12(10) 

C(l)-Pt(l)-P(3) 90.8(3) P(2)-Pt(l)-P(3) 169.82(11) 

Cl(l)-Pt(l)-P(3) 89.37(10) C(l)-Pt(2)-P(4) 105.6(3) 

C(l)-Pt(2)-P(l) 44.2(3) P(l)-Pt(2)-P(4) 149.29(11) 

C(l)-Pt(2)-P(5) 149.0(3) P(4)-Pt(2)-P(5) 105.17(11) 

P(l)-Pt(2)-P(5) 105.43(10) Pt(l)-C(l)-Pt(2) 140.8(5) 

Pt(l)-C(l)-P(l) 145.2(6) Pt(2)-C(l)-P(l) 73.9(4) 

Pt(2)-P(l)-C(l) 61.9(3) W(l)-P(l)-C(l) 136.1(3) 

C(l)-Pt(l)-P(2) 89.8(3) W(l)-P(l)-Pt(2) 157.31(13) 

"Numbers in parentheses are estimated standard deviations in the least significant digits. 



www.manaraa.com

144 

Table 4. Comparison of ^'P NMR data (THF) for Cl(Et3P)2Pt[ti-Ti', n'. Ti'-CsP]Pt(PEt3)2 

(11) with those of the complexes CI(Et3P)2Pt[M.-ri'. l'. n'-C=P{ML„}]Pt(PEt3)2, where ML„ = 

Pt(Cl)3(PEt3) (III), W(CO)s (IV), Me^ (Va)." 

Cmpd 5P(x) 5P(c) 5 P(b) 5P(a) V V •'(xHc) -J ^'(bWc) •'Pt-UI ' J •' Pt-(c) 

ppm ppm ppm ppm Hz Hz Hz Hz Hz Hz Hz 

D 107.0 18.6 15.0 4.9 10.7 13.7 10.7 35.1 2936 3155 3619 

m 111.2 17.2 15.9 5.0 21.4 148.0 42.5 8.7 2829 3601 2926 

IV 41.4 13.9 16.6 3.1 18.9 152.9 38.7 9.1 2818 3568 2917 

Va 34.7 20.1 18.7 8.1 20.6 148.9 23.8 10.2 2662 3641 2441 

a) See eqns 5, 6 and Scheme I for atom labels. 
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Table 5. Comparison of ^'P NMR data for (Cl)(Et3P)Pt(|x-C=PMes*)Pt(PEt3)2(Cl) (2), 

(Cl)(Ph3P)Pt(^-CO)Pt(PPh3)2(Cl) (4), and complexes (CI)(Et3P)Pt(^-C=PR)Pt(PEt3),(X) 

(Vc: R = Me,X = I; VI: R = Bn,X = Br; VH: R = i-Pr,X = ir 

Cmpd 5 P(x) 5P(b) 5P(a) 3 / 
•'uMbl 

-/ -J 'y '-f 
•'Ptl-(a) -J •'Pi2-(a) 

ppm ppm ppm Hz Hz Hz Hz Hz Hz Hz Hz 

2 151.3 22.8 19.6 35 23 321 110 4814 512 2428 67 

4 - 30.2 21.74 - - - - 5440 804 2680 59 

Vc 155.4 21.5 8.7 15.3 12.1 565 232 5174 463 2339 43.5 

VI 172.1 22.8 13.3 13.8 11.7 593 228 5223 497 2332 47.0 

vn 200.3 25.9 12.9 15.2 12.1 538 232 5257 473 2367 46.4 

a) See eqn 7 for atom labels. 
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Figure Captions 

Figure 1. Thermal ellipsoid drawing of fra«5-CI(Et3P)2Pt[C(Cl)=PN(SiMe3)2] (lb). 

Figure 2. Thermal ellipsoid drawing of Cl(Et3p)2Pt[n-Ti', q', Ti--CsP{W(CO)5}]Pt(PEt3) 

(IV). 
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Figure 1. 
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Figure 2. 
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GENERAL SUMMARY 

The oxidative addition reactions of zerovalent Ni, Pd and Ft phosphine complexes with 

dihalophosphaalkene compounds resulted in the formation of several complexes containing 

new carbon-phosphorus multiply bonded ligands. When M(PEt3)4 was reacted with 

Cl2C=PN(SiMe3)2, phosphavinyl complexes (I) were observed with M = Pd, Pt and Ni. 

However, when MCPPh,)^ was reacted with Cl2C=PN(SiMe3)2, only in the case of M = Pd 

was a phosphavinyl complex (I) observed, which underwent PPhj rearrangement upon 

warming to form a phosphavinyl phosphonium complex (II). In the case of M = Ni, a 

M(PR3)4 + _ 
Cl2C=PN(SiMe3)2 

PR, 

CI—M-C. 
.CI 

R3P̂  ^C1 

Ao r R3P p. 
3 N(SiMe3)2 V 

N(SiMe3)2 
M = Pd, Pt, Ni; R = Et 
M = Pd,R = Ph M = Pd,Ni; R = Ph 

(H) 

PR3 
1 

A 
N(SiMe3)2 

PR. 

a) 

2 iM(PR3)4 + _ 
Cl2C=PN(SiMe3)2 

CI 

R3P 

CI 

R3R SiMeg 

N 

PR, SiMei 

M = Ni; R = Ph 

(in) 
M = Pd; R = Et 

(IV) 

phosphavinyl intermediate (I) was postulated, but only the phosphavinyl phosphonium 

complex (n) was observed; this nickel complex was not isolated, but reacted with another 

equivalent of Ni(PPh3)4 to generate the first example of a phosphavinylidene phosphorane 

complex (HI). When Ni(PPh3)4 was reacted with Cl2C=PMes*, again a phosphavinyl 

phosphonium complex (II) formed, but having a proton in place of the chloride on the C-P 
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carbon; this was the first reported example of a complex containing a phosphavinyl 

phosphonium ligand. Evidently, the presence of PPh, ligands favors the formation of the 

phosphavinyl phosphonium complexes, while PEtj tends to stabilize the phosphavinyl 

complexes. When two equivalents of Pd(PEt3)4 were reacted with Cl2C=PN(SiMe3)2, the first 

example of a phosphonio-methylene(imino)metaIlophosphorane (IV) formed. This complex 

underwent hydrolysis to form the first example of a phosphonio-methylene(oxo)phosphorane 

complex. Several of these compounds exhibited interesting substitution reactions and the 

structures that were obtained provided insights into the bonding properties of these new 

carbon-phosphorus unsaturated ligands. 

A new high-yield synthesis of the ri', ri"-bridging cyaphide (CsF) dimer (V) was 

developed. This complex reacted with various alkyl halides to afford semi-bridging 

isocyaphide (CsPR) complexes (VII). In the case of R = Me, an intermediate ti', n'-bridging 

isocyaphide complex (VI) was isolated during this reaction; this is the first example of an 

isocyaphide ligand coordinated in this type of bridging mode. These reactions demonstrated 

that isocyaphide complexes with non-bulky alkyl groups can be stabilized on transition metals 

and may provide for further functionalization of these interesting ligands. 

The n', n'-bridging cyaphide (C=P") complex (V) was found to contain a further 

ligation site by virtue of its lone pair of electrons on the C=P phosphorus atom; thus, the first 

exeimples of trinuclear metal-cyaphide complexes were obtained by coordination of this 

phosphorus atom to a W(C0)5 fragment and a Pt(Cl)3(PEt3) fragment. 

(V) (VI) (VH) 
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